Understanding the nucleon structure: basic formalism, modern tools and open questions

Egle Tomasi-Gustafsson

CEA, IRFU, DPhN and Université Paris-Saclay, France Egle.Tomasi@cea.fr

Part I

- Introduction
 - Motivation and scales
- Phenomenology
 - Elementary reactions
 - kinematics, crossing symmetry
 - Elastic scattering
 - Jlab and the GEp experiment
- Applications
 - Polarization
 - The proton radius problem

Part II

- Phenomenology
 - Elementary reactions
 - Annihilation reactions
 - The PANDA experiment
- Form factors in annihilation and scattering: understanding how matter is formed

Part II

- Phenomenology
 - Elementary reactions
 - Annihilation reactions
 - The PANDA experiment
- Form factors in annihilation and scattering: understanding how matter is formed

SL & TL Form Factors

The time-like region

$$p(p_1) + p(-p_2) \longrightarrow e^-(k_2) + e^+(-k_1)$$

$$e(k_1) + e^{-}(-k_2) \rightarrow p(-p_1) + p(p_2)$$

The measurement of the differential cross section

- At a fixed value of s
- For two different angles allows the separation of GE and GM.

TL equivalent of the Rosenbluth separation in SL region

- It is simpler in TL region, because a collider works at constant s and 4π detectors allow to cover all angular range
- No individual determination of GE and GM has been done up to now
- Present and next future

Poltava, 13-VII-2018

Cez

 $\cos^2 \tilde{\theta} = 1 + \frac{st + (s - M^2)^2}{t(\frac{t}{r} - M^2)} \to 1 +$

Annihilation channel

Poltava, 13-VII-2018

The matrix element

$$p(p_1) + p(-p_2) \longrightarrow e^-(k_2) + e^+(-k_1)$$

The Matrix element:

$$\mathcal{M}=rac{e^2}{q^2}\overline{v}(k_2)\gamma_\mu u(k_1)\overline{u}(p_2)J_\mu v(p_1),$$

$$egin{aligned} J_{\mu} &= \left[F_1(q^2)\gamma_{\mu} - rac{\sigma_{\mu
u}q_{
u}}{2M_p}F_2(q^2)
ight] \ &= \left[F_1(q^2) + F_2(q^2)
ight]\gamma_{\mu} - rac{(-p_1+p_2)_{\mu}}{2M_p}F_2(q^2), \end{aligned}$$

In terms of Pauli σ matrices:

$$\vec{J} = \sqrt{q^2} \varphi_2^{\dagger} \left[G_M(q^2) (\vec{\sigma} - \hat{\mathbf{p}} \vec{\sigma} \cdot \hat{\mathbf{p}}) + \frac{1}{\sqrt{\tau}} G_E(q^2) \hat{\mathbf{p}} \vec{\sigma} \cdot \hat{\mathbf{p}} \right] \varphi_1,$$

 $ec{L}=\sqrt{q^2}arphi_2^\dagger(ec{\sigma}-\hat{f k}ec{\sigma}\cdot\hat{f k})arphi_1,$

- Unpolarized leptons
- Threshold: $G_E(q^2=4M^2)=G_M(q^2=4M_p^2)$
- $\hat{\vec{p}}\vec{\sigma}\cdot\hat{\vec{p}}$ annihilation from *D-state*

Annihilation Cross Section (1)

$$\left(\frac{d\sigma}{d\Omega}\right)_0 = \frac{|\overline{\mathcal{M}}|^2}{64\pi^2 q^2} \frac{k}{p}, \ k = \frac{\sqrt{q^2}}{2}, \ p = \sqrt{\frac{q^2}{4} - m^2}$$

$$\begin{aligned} |\overline{\mathcal{M}}|^2 &= \frac{1}{4} \frac{e^4}{q^4} L_{ab} J_{ab}, \ L_{ab} = L_a L_b^*, \ J_{ab} = J_a J_b^*. \\ \overline{L_{ab}} &= \overline{L_a L_b^*} \sim Tr(\sigma_a - \hat{k}_a \vec{\sigma} \cdot \vec{k})(\sigma_b - \hat{k}_b \vec{\sigma} \cdot \vec{k}) = 2(\delta_{ab} - k_a k_b) \end{aligned}$$

as $\vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{p} = \vec{p} \cdot \vec{p} = p^2 = 1$ (unit vectors) $p_a \vec{\sigma} \cdot \vec{p} \sigma_b = p_a (\vec{p} \cdot \hat{b} + i\vec{\sigma} \cdot \vec{p} \times \hat{b})$ and Tr of one σ vanish. $Tr \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \vec{b} \vec{\sigma} \cdot \vec{c} = i\vec{a} \cdot \vec{b} \times \vec{c}.$

Hadron tensor J_{ab} : the product gives four terms. Let us classify along FFs.

$$ec{J} = \sqrt{q^2} arphi_2^\dagger \left[G_M(q^2) (ec{\sigma} - \hat{\mathbf{p}} ec{\sigma} \cdot \hat{\mathbf{p}}) + rac{1}{\sqrt{ au}} G_E(q^2) \hat{\mathbf{p}} ec{\sigma} \cdot \hat{\mathbf{p}}
ight] arphi_1,$$

Annihilation Cross Section (2)

$$egin{aligned} ec{J} = \sqrt{q^2}arphi_2^\dagger \left[G_M(q^2) (ec{\sigma} - \hat{\mathbf{p}}ec{\sigma} \cdot \hat{\mathbf{p}}) + rac{1}{\sqrt{ au}} G_E(q^2) \hat{\mathbf{p}}ec{\sigma} \cdot \hat{\mathbf{p}}
ight] arphi_1, \end{aligned}$$

$$1)|G_{M}|^{2} : \frac{1}{2}Tr(\sigma_{a} - p_{a}\vec{\sigma} \cdot \vec{p})(\sigma_{b} - p_{b}\sigma \cdot p)$$

$$\rightarrow \sigma_{a}\sigma_{b} - p_{a}\vec{\sigma} \cdot \vec{p}\sigma_{b} - \sigma_{a}p_{b}\vec{\sigma} \cdot \vec{p} + p_{a}p_{b}\vec{\sigma} \cdot \vec{p}\vec{\sigma} \cdot \vec{p}$$

$$= \delta_{ab} - p_{a}p_{b} - p_{b}p_{a} + p_{a}p_{b} = \delta_{ab} - p_{a}p_{b}$$

2) $|G_E|^2 : \frac{1}{\tau} p_a \vec{\sigma} \cdot \vec{p} p_b \vec{\sigma} \cdot \vec{p} = \frac{1}{\tau} p_a p_b$ 3) No interference terms :

$$\begin{aligned} G_E G_M^* &: \frac{1}{2} Tr[p_a \vec{\sigma} \cdot \vec{p} (\sigma_b - p_b \vec{\sigma} \cdot \vec{p})] \\ & \rightarrow \frac{1}{\sqrt{\tau}} [p_a \vec{\sigma} \cdot \vec{p} \sigma \cdot \hat{b} - p_a p_b \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{p}] \\ &= (p_a p_b - p_a p_b) = 0 \end{aligned}$$

4) Similarly $G_M G_E^* : \frac{1}{2} Tr \frac{1}{\tau} (\sigma_a - p_a \sigma \cdot p) p_b \vec{\sigma} \cdot \vec{p} = 0.$

Annihilation Cross Section (3)

We took into account the properties of σ matrices : $\vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{p} = p^2 = 1$, $Tr\vec{\sigma} \cdot \vec{a}\vec{\sigma} \cdot \vec{b}\vec{\sigma} \cdot \vec{c} = i\vec{a} \cdot \vec{b} \times \vec{c}$.

Annihilation Cross Section (4)

$$\overline{p}(p_1) + p(-p_2) \rightarrow e^{-}(k_2) + e^{+}(-k_1)$$

The differential cross section

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_0 = \mathcal{N} \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \mathcal{N} = \frac{\alpha^2}{4\sqrt{q^2(q^2 - 4m^2)}}.$$

$$Magnetic \qquad Electric \qquad \alpha = e^2/(4\pi) \simeq 1/137.$$

The angular Asymmetry

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{0} = \sigma_{0} \left[1 + \mathcal{A} \cos^{2} \theta \right] |, \qquad \mathcal{A} = \frac{\tau |G_{M}|^{2} - |G_{E}|^{2}}{\tau |G_{M}|^{2} + |G_{E}|^{2}} = \frac{\tau - \mathcal{R}^{2}}{\tau + \mathcal{R}^{2}}.$$

$$\sigma_{0} = \frac{\alpha^{2}}{4q^{2}} \sqrt{\frac{\tau}{\tau - 1}} \left(|G_{M}|^{2} + \frac{1}{\tau}|G_{E}|^{2} \right) \qquad \mathcal{R} = |G_{E}|/|G_{M}|$$

The total cross section

$$\sigma(q^2) = \mathcal{N}\frac{8}{3}\pi \left[2|G_M|^2 + \frac{1}{\tau}|G_E|^2\right].$$

Polarized Antiprotons (1)

 \vec{P}_1 and \vec{P}_2 : polarizations of the colliding antiproton and proton :

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_0 (\vec{P}_1, \vec{P}_2) = \left(\frac{d\sigma}{d\Omega} \right)_0 [1 + A_y (P_{1y} + P_{2y}) + A_{xx} P_{1x} P_{2x} + A_{yy} P_{1y} P_{2y} + A_{zz} P_{1z} P_{2z} + A_{xz} (P_{1x} P_{2z} + P_{1z} P_{2x})]$$

where A_i and A_{ij} (i, j = x, y, z) are the analyzing powers and correlation coefficients, and depend on the nucleon FFs. The polarized hadronic tensor :

$$W_{ab}(\vec{P}_1,\vec{P}_2) = \frac{1}{2} \operatorname{Tr} J_a \vec{\sigma} \cdot \vec{P}_1 J_b^* \vec{\sigma} \cdot \vec{P}_2.$$

The cross section with unpolarized electrons is proportional to $L_{ab}\overline{W_{ab}}$.

Polarized antiproton beam (2)

$$\begin{pmatrix} d\sigma \\ d\Omega \end{pmatrix}_{0} \vec{A}_{1} \sim -L_{ab} \frac{1}{4} \operatorname{Tr} J_{a} \vec{\sigma} J_{b}^{*} = \\ [(\sigma_{a} - p_{a} \vec{\sigma} \cdot \vec{p}) G_{M} + \frac{1}{\tau} G_{E} p_{a} \vec{\sigma} \cdot \vec{p}] (-\vec{\sigma} \cdot \vec{P}_{1}) \\ [(\sigma_{b} - p_{b} \vec{\sigma} \cdot \vec{p}) G_{M}^{*} + \frac{1}{\tau} G_{E}^{*} p_{b} \vec{\sigma} \cdot \vec{p}] (\delta_{ab} - k_{a} K_{b})$$

Note : $Tr\vec{\sigma} \cdot \vec{a}\vec{\sigma} \cdot \vec{b}\vec{\sigma} \cdot \vec{c} = i\vec{a} \cdot \vec{b} \times \vec{c} = ib \cdot \vec{c} \times \vec{a} = i\vec{c} \cdot \vec{a} \times \vec{b}$ For antiparticles we remember a global general sign : $(-\vec{\sigma} \cdot \vec{P}_1)$

Polarized antiproton beam $|G_M|^2(3)$

 $|G_{M}|^{2}$:

$$[1]: (\sigma_{a} - p_{a}\vec{\sigma} \cdot \vec{p})\vec{\sigma} \cdot \vec{P}_{1}(\sigma_{b} - p_{b}\vec{\sigma} \cdot \vec{p})\delta_{ab} - [2]: (\sigma_{a} - p_{a}\vec{\sigma} \cdot \vec{p})\vec{\sigma} \cdot \vec{P}_{1}(\sigma_{b} - p_{b}\vec{\sigma} \cdot \vec{p})\hat{k}_{a}\hat{k}_{b}$$

$$[1]: \sigma_{a}\vec{\sigma} \cdot \vec{P}_{1}\sigma_{a} - p_{a}\vec{\sigma} \cdot \vec{p}\vec{\sigma} \cdot \vec{P}_{1}\sigma_{a} - \sigma_{a}\vec{\sigma} \cdot \vec{P}_{1}p_{a}\vec{\sigma} \cdot \vec{p} + p_{a}\vec{\sigma} \cdot \vec{p}\vec{\sigma} \cdot \vec{P}_{1}p_{a}\vec{\sigma} \cdot \vec{p}$$

$$= -p_{a}(a \cdot P_{1} \times \vec{p} + p \cdot P_{1} \times \vec{a}) + p_{a}^{2}\vec{\sigma} \cdot \vec{P}_{1} = 0$$

$$[2]: (\vec{\sigma} \cdot \vec{k} - \vec{p} \cdot \vec{k}\vec{\sigma} \cdot \vec{p})\vec{\sigma} \cdot \vec{P}_{1}(\vec{\sigma} \cdot \vec{k} - \vec{p} \cdot \vec{k}\vec{\sigma} \cdot \vec{p}) + \vec{p} \cdot \vec{k}\vec{\sigma} \cdot \vec{p} - \vec{k} \cdot \vec{k} - \vec{k} - \vec{k}\vec{k} \cdot \vec{k} - \vec{k} - \vec{k} - \vec{k}\vec{k} \cdot \vec{k} - \vec{k} - \vec{k} - \vec{k} - \vec{k}\vec{k} \cdot \vec{k} - \vec{k} - \vec{k} - \vec{k} \cdot \vec{k} - \vec{k$$

$$|\mathbf{G}_{\mathbf{E}}|^{2}: \quad \frac{1}{\tau} \left[p_{\mathbf{a}} \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{P}_{1} p_{\mathbf{a}} \vec{\sigma} \cdot \vec{p} - (\vec{p} \cdot \vec{k})^{2} \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{P}_{1} \vec{\sigma} \cdot \vec{p} \right] = 0$$

Polarized antiproton beam $G_E G_M^*(4)$

$$G_{M}G^{*}{}_{E}: \qquad \frac{1}{\sqrt{\tau}}[(\vec{\sigma}_{a} - p_{a}\vec{\sigma} \cdot \vec{p})\vec{\sigma} \cdot \vec{P}_{1}p_{b}\vec{\sigma} \cdot \vec{p}](\delta_{ab} - k_{a}k_{b})$$

$$= \frac{1}{\sqrt{\tau}}[(\vec{\sigma}_{a} - p_{a}\vec{\sigma} \cdot \vec{p})\vec{\sigma} \cdot \vec{P}_{1}p_{a}\vec{\sigma} \cdot \vec{p} - (\vec{\sigma} \cdot \vec{k} - \vec{p} \cdot \vec{k}\vec{\sigma} \cdot \vec{p})\vec{\sigma} \cdot \vec{P}_{1}\vec{p} \cdot \vec{k}\vec{\sigma} \cdot \vec{p}]$$

Explicitly each component:

$$\begin{aligned} &\frac{1}{\tau} [(\sigma_x \vec{\sigma} \cdot \vec{P}_1 p_x \sigma_z + \sigma_y \vec{\sigma} \cdot \vec{P}_1 p_y \sigma_z) \\ &- (\sigma_x \sin \theta + \sigma_z \cos \theta - \sigma_z \cos \theta) \vec{\sigma} \cdot \vec{P}_1 \cos \theta \sigma_z] \\ &= -\sigma_x \sin \theta \cos \theta \vec{\sigma} \cdot \vec{P}_1 \sigma_z = -i \sin \theta \cos \theta P_{1y} \end{aligned}$$

Polarized antiproton beam $G_E G_M^*(5)$

$$G_E G^*_M$$
:

$$\begin{split} & [p_a \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{P}_1 (\sigma_b - p_b \vec{\sigma} \cdot \vec{p})] (\delta_{ab} - k_a k_b) \\ = & [p_a \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{P}_1 \vec{\sigma}_a - p_a \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{P}_1 p_a \vec{\sigma} \cdot \vec{p} - \\ & \vec{p} \cdot \vec{k} \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{P}_1 \vec{\sigma} \cdot \vec{k} - (\vec{p} \cdot \vec{k})^2 \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{P}_1 \vec{\sigma} \cdot \vec{p} \\ = & i [p_a \vec{a} \cdot \vec{p} \times \vec{P}_1 - \cos \theta \vec{p} \cdot \vec{P}_1 \times \vec{k}] \end{split}$$

$$\vec{a} \cdot \vec{p} \times \vec{P}_1 \to p_x = p_y = 0; z \cdot p_z \times P_1 = 0$$
$$\begin{pmatrix} p & 0 & 0 & 1 \\ P & P_{1x} & P_{1y} & P_{1z} \\ k & \sin \theta & 0 & \cos \theta \end{pmatrix}$$
$$G_E G_M^* \to \frac{i}{\sqrt{\tau}} \cos \theta \sin \theta P_{1y}$$

Single spin observables

When the beam is polarized

$$\left(rac{d\sigma}{d\Omega}
ight)_0 A_{1,y} = -rac{i\mathcal{N}}{\sqrt{ au}}\sin heta\cos heta[G_MG_E^* - G_EG_M^*] = rac{\mathcal{N}}{\sqrt{ au}}\sin2 heta Im(G_MG_E^*).$$

When the target is polarized

$$\left(\frac{d\sigma}{d\Omega}\right)_{0}\vec{A}_{2} = L_{ab}\frac{1}{4}TrJ_{a}J_{b}^{*}\vec{\sigma}. \qquad \vec{A}_{2} = \vec{A}_{1} = \vec{A}.$$

Unitarity

In TL region single spin observables do not vanish: FFs are complex (q²>0). *Final state interaction*

Double spin polarization observables

$$\left(rac{d\sigma}{d\Omega}
ight)_{0}A_{ab}=-rac{1}{4}L_{mn}TrJ_{m}\sigma_{a}J_{n}^{\dagger}\sigma_{b},$$

The nonzero components are:

$$\begin{split} & \left(\frac{d\sigma}{d\Omega}\right)_{0} A_{xx} &= \sin^{2}\theta \left(|G_{M}|^{2} + \frac{1}{\tau}|G_{E}|^{2}\right)\mathcal{N}, \\ & \left(\frac{d\sigma}{d\Omega}\right)_{0} A_{yy} &= -\sin^{2}\theta \left(|G_{M}|^{2} - \frac{1}{\tau}|G_{E}|^{2}\right)\mathcal{N}, \\ & \left(\frac{d\sigma}{d\Omega}\right)_{0} A_{zz} &= \left[(1 + \cos^{2}\theta)|G_{M}|^{2} - \frac{1}{\tau}\sin^{2}\theta|G_{E}|^{2}\right]\mathcal{N}, \\ & \left(\frac{d\sigma}{d\Omega}\right)_{0} A_{xz} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} A_{zx} = \frac{1}{\sqrt{\tau}}\sin 2\theta ReG_{E}G_{M}^{*}\mathcal{N}. \end{split}$$

Relative phase: Ay, Axz

Facility for Antiproton and Ion Research (Darmstadt/Germany)

CBM Heavy Ions

1111

PANDA Anti-protons

All physics communities are represented

FAIR Facility for Antiproton and Ion Research in Europe GmbH

Antiprotons at FAIR

http://www.fair-center.eu/

https://panda.gsi.de

Parameters of HESR

- Injection of pbar at 3.7 GeV
- Slow synchrotron
- Momentum 1.5-15 GeV/c
- Luminosity 10³¹ cm⁻²s⁻¹ (up to $L_{peak} \sim 2 \times 10^{32}$ cm⁻²s⁻¹)
- Beam cooling

Pbar production

Proton Linac 70 MeV
Accelerate p in SIS18/SIS100
Produce pbar on NI/Cu target
Collect pbar in CR
Storage in HESR

Antiproton facilities

Experiment	Years	Intensity	Momentum range	$\Delta p/p$
		\bar{p}/s	[GeV/c]	
CERN -LEAR	1983-1996	$2\cdot 10^6$	0.06-1.94	10^{-3}
FermiLab	1985-2011	$2\cdot 10^6$	<8.9	10^{-4}
45% polarized \bar{p}		10^{4}	(Low energy beams)	
PANDA		$2\cdot 10^7$	1.5 - 15	10^{-5}

Panda will have:

- Better luminosity
- Better beam momentum resolution
- Better detector (coverage, PID, magnetic field..)

Proton-Antiproton Annihilation

- Formation:
 - -> (precision physics)

J = 0, 2, ... C = +

J = 1, ... C = -

- q-qbar annihilate into gluons
- gluon-rich environment
- all quantum numbers allowed by qqbar

Egle Tomasi-Gustafsson

2

Search for glueballs, hybrids

Very precise scan of a resonance in formation mode: depends on HESR beam momentum resolution Dp/p~2x10⁻⁵

<u>Appearance of a resonance in production mode and disappearance in</u> formation mode sign its exotic nature

Hadron Physics

START/ FULL SETUP

Hadron Electromagnetic Form factors

Antiprotons at FAIR

Threshold physics

VEPPII, Novosibirsk

1800

1850

Beijing, BEPC2, BES3 400 $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ BESIII data 300 Belle data BESIII fit PHSP model σ (pb) Threshold 200 Λ 100 **BESIII** 0 4.56 4.57 4.58 4.59 4.6 (GeV) RPC:8 RPC: 9 lavers layers Electro Magnetic Calorimeter σ (nb) SC Solenoid n 30s0=0.83 2012 Barrel 2011 cos0=0.90 Ρ ToF FENICE Endcap 1 cos0=0.93 ToF SC Quadrupole E 0 1900 1950

Poltava, 13-VII-2018

29

1950

1900

2000 2E_b (MeV)

The Time-like Region

Expected QCD scaling $(q^2)^2$

$$|F_{scaling}(q^2)| = \frac{\mathcal{A}}{(q^2)^2 \log^2(q^2/\Lambda^2)}$$

The Time-like Region

Cea

Oscillations : regular pattern in P_{Lab}

The relevant variable is p_{Lab} associated to the relative motion of the final hadrons.

A. Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Oscillations : regular pattern in P_{Lab}

iated to the relative

$$p) \equiv A \exp(-Bp) \cos(Cp + D).$$

	$B\pm \Delta B$	$C\pm\Delta C$	$D \pm \Delta D$	$\chi^2/n.d.f$
	$[GeV]^{-1}$	$[GeV]^{-1}$		
)1	0.7 ± 0.2	5.5 ± 0.2	0.03 ± 0.3	1.2

Il perturbationB: dampingfmD=0: maximum at p=0

le oscillatory behaviour I number of coherent sources

A.Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015), PRC 93, 035201 (2016)

Fourier Transform

- Rescattering processes
- Large imaginary part
- Related to the time evolution of the charge density? (E.A. Kuraev, E. T.-G., A. Dbeyssi, PLB712 (2012) 240)
- Consequences for the SL region?
- Data from BESIII confirm the structures
- Expected from PANDA

VMD: Iachello, Jakson and Landé (1973)

Isoscalar and isovector FFs

$$\begin{split} F_1^s(Q^2) \ &= \ \frac{g(Q^2)}{2} \left[(1 - \beta_\omega - \beta_\phi) + \beta_\omega \frac{\mu_\omega^2}{\mu_\omega^2 + Q^2} + \beta_\phi \frac{\mu_\phi^2}{\mu_\phi^2 + Q^2} \right], \\ F_1^v(Q^2) \ &= \ \frac{g(Q^2)}{2} \left[(1 - \beta_\rho) + \beta_\rho \frac{\mu_\rho^2 + 8\Gamma_\rho \mu_\pi / \pi}{(\mu_\rho^2 + Q^2) + (4\mu_\pi^2 + Q^2)\Gamma_\rho \alpha(Q^2) / \mu_\pi} \right], \\ F_2^s(Q^2) \ &= \ \frac{g(Q^2)}{2} \left[(\mu_p + \mu_n - 1 - \alpha_\phi) \frac{\mu_\omega^2}{\mu_\omega^2 + Q^2} + \alpha_\phi \frac{\mu_\phi^2}{\mu_\phi^2 + Q^2} \right], \\ F_2^v(Q^2) \ &= \ \frac{g(Q^2)}{2} \left[(\mu_p - \mu_n - 1) \frac{\mu_\rho^2 + 8\Gamma_\rho \mu_\pi / \pi}{(\mu_\rho^2 + Q^2) + (4\mu_\pi^2 + Q^2)\Gamma_\rho \alpha(Q^2) / \mu_\pi} \right], \end{split}$$

 $\sqrt{*}$

ω,ρ,φ

$$g(Q^2) = \frac{1}{(1+\gamma e^{i\theta}Q^2)^2}$$
$$\alpha(Q^2) = \frac{2}{\pi} \sqrt{\frac{Q^2+4\mu_\pi^2}{Q^2}} ln \left[\frac{\sqrt{(Q^2+4\mu_\pi^2)}+\sqrt{Q^2}}{2\mu_\pi} \right]$$

$$2F_i^p = F_i^s + F_i^v,$$

$$2F_i^n = F_i^s - F_i^v.$$

The nucleon

3 valence quarks and a neutral sea of $q\overline{q}$ pairs

antisymmetric state of colored quarks

 $|p \rangle \sim \epsilon_{ijk} |u^{i}u^{j}d^{k} \rangle$ $|n \rangle \sim \epsilon_{ijk} |u^{i}d^{j}d^{k} \rangle$

New assumption :

...does not hold in the spatial center of the nucleon: the center of the nucleon *is electrically neutral*, due to strong gluonic field

E.A. Kuraev, E. T-G, A. Dbeyssi, Phys.Lett. B712 (2012) 240

Definition of TL-SL Form Factors

$$F(q) = \int d^4x e^{iqx} F(x).$$

$$F_{SL,Breit}(q) = \int d^3 \vec{x} \ e^{-i\vec{q}\cdot\vec{x}} \int dt F(t,\vec{x}) \equiv \int d^3 \vec{x} \ e^{-i\vec{q}\cdot\vec{x}} \rho(|\vec{x}|),$$

$$\rho(|\vec{x}|) = \int dt F(t,\vec{x}).$$

$$F_{TL,CM}(q) = \int dt \ e^{iqt} \int d^3 \vec{x} F(t, \vec{x}) \equiv \int dt \ e^{iqt} R(t),$$
$$R(t) = \int d^3 \vec{x} F(t, \vec{x}).$$

 (\vec{x}) and R(t), represent projections of the same distribution in orthogonal subspaces

Cea

Egle Tomasi-Gustafsson

Charge: photon-charge coupling

Fourier transform of a stationary charge and current distribution

Amplitude for creating charge-anticharge pairs at time t. Charge distribution => distribution in time of

Conclusion - Discussion

Cez

Egle Tomasi-Gustafsson

(1) Equivalent forms J_{μ}

$$J_{m \mu} \, = \left[F_1(q^2) + F_2(q^2)
ight] \gamma_{\mu} - rac{(-p_1+p_2)_{\mu}}{2M_p}F_2(q^2),$$

$$\begin{split} J_{\mu} &\rightarrow \varphi_{2} \tilde{J}_{\mu} \varphi_{1} \\ J_{\mu} &= (F_{1} + F_{2}) \left(\chi_{2}, \ -\frac{\vec{\sigma} \cdot (-\vec{p})}{E + m} \chi_{2} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{cc} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{array} \right) \left(\begin{array}{cc} \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi_{1} \\ \chi_{1} \end{array} \right) \\ &+ \left(\chi_{2}, \ \frac{\vec{\sigma} \cdot (-\vec{p})}{E_{1} + m} \chi_{2} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \frac{2\vec{p}}{2m} F_{2} \left(\begin{array}{cc} \frac{\vec{\sigma} \cdot \vec{p}}{E_{1} + m} \chi_{1} \\ \chi_{1} \end{array} \right) \\ &= (F_{1} + F_{2}) \left(\chi_{2}, \ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi_{2} \right) \left(\begin{array}{cc} -\vec{\sigma} \frac{\vec{\sigma} \chi_{1}}{\vec{\sigma} \cdot \vec{p}} \\ -\vec{\sigma} \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi_{1} \end{array} \right) + \frac{\vec{p}}{m} F_{2} \chi_{2} \left(\frac{\vec{\sigma} \cdot \vec{p}}{E + m} + \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \right) \chi_{1} \\ &= (F_{1} + F_{2}) \left[\vec{\sigma} - \frac{1}{(E + m)^{2}} \vec{\sigma} \cdot \vec{p} \vec{\sigma} \vec{\sigma} \cdot \vec{p} \right] + \frac{2\vec{p}}{m} F_{2} \chi_{2} \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi_{1} \end{split}$$

 $(E + M_p)$ Global factor

Properties of Pauli σ matrices:

$$(2\hat{\vec{p}}-\vec{\sigma}\vec{\sigma}\cdot\hat{\vec{p}})\vec{\sigma}\cdot\hat{\vec{p}}=2\hat{\vec{p}}\vec{\sigma}\cdot\hat{\vec{p}}-\vec{\sigma}$$

$$J_{\mu} = (F_{1} + F_{2}) \left(\vec{\sigma} - 2\frac{\vec{E} - m}{\vec{E} + m} \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}} + \frac{\vec{E} - m}{\vec{E} + m} \vec{\sigma} \right) + \frac{2(\vec{E} - m)}{m} F_{2} \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}}$$

$$= (F_{1} + F_{2}) \left(\vec{\sigma} + \frac{\vec{E} - m}{\vec{E} + m} \vec{\sigma} \right) - 2 \left[(F_{1} + F_{2}) \frac{\vec{E} - m}{\vec{E} + m} - \frac{\vec{E} - m}{m} F_{2} \right] \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}}$$

$$= \frac{2E}{\vec{E} + m} (F_{1} + F_{2}) \vec{\sigma} - \frac{2(\vec{E} - m)}{m(\vec{E} + m)} [mF_{1} + mF_{2} - \vec{E}F_{2} - mF_{2}] \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}}$$

$$= \frac{2E}{\vec{E} + m} (F_{1} + F_{2}) \vec{\sigma} - 2E(F_{1} + F_{2}) \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}} + 2m \left(F_{1} + \frac{\vec{E}^{2}}{m^{2}} F_{2} \right)$$

$$= \frac{2E}{\vec{E} + m} \left[G_{M} (\vec{\sigma} - \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}}) \right] + 2m G_{E} \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}}$$

Finally (reminding the global factor (E + m)):

$$J = 2E \left[G_M \left(\vec{\sigma} - \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}} \right) + \frac{1}{\sqrt{\tau}} G_E \hat{\vec{p}} \vec{\sigma} \cdot \hat{\vec{p}} \right]$$

The proton radius

Egle Tomasi-Gustafsson

Root mean square radius

$$F(q) = \frac{\int_{\Omega} d^3 \vec{x} e^{i\vec{q}\cdot\vec{x}} \rho(\vec{x})}{\int_{\Omega} d^3 \vec{x} \rho(\vec{x})}.$$

$$< r_c^2 >= \frac{\int_0^\infty x^4 \rho(x) dx}{\int_0^\infty x^2 \rho(x) dx}.$$

Expanding in Taylor series:

$$F(q) \sim 1 - \frac{1}{6}q^2 < r_c^2 > +O(q^2),$$

$$\langle r_{E/M}^2 \rangle = - \frac{6\hbar^2}{G_{E/M}(0)} \frac{dG_{E/M}(Q^2)}{dQ^2} \Big|_{Q^2 = 0}.$$

RMS is the limit of the **form factor derivative** for $Q^2 \rightarrow 0$

G

High-Precision Determination of the Electric and Magnetic Form Factors of the Proton

J. C. Bernauer,^{1,*} P. Achenbach,¹ C. Ayerbe Gayoso,¹ R. Böhm,¹ D. Bosnar,² L. Debenjak,³ M. O. Distler,^{1,†} L. Doria,¹ A. Esser,¹ H. Fonvieille,⁴ J. M. Friedrich,⁵ J. Friedrich,¹ M. Gómez Rodríguez de la Paz,¹ M. Makek,² H. Merkel,¹ D. G. Middleton,¹ U. Müller,¹ L. Nungesser,¹ J. Pochodzalla,¹ M. Potokar,³ S. Sánchez Majos,¹ B. S. Schlimme,¹ S. Širca,^{6,3} Th. Walcher,¹ and M. Weinriefer¹

Mainz, A1 collaboration (1400 points)

 $\langle r_E^2 \rangle^{1/2} = 0.879(5)_{\text{stat}}(4)_{\text{syst}}(2)_{\text{model}}(4)_{\text{group}}$ fm, $\langle r_M^2 \rangle^{1/2} = 0.777(13)_{\text{stat}}(9)_{\text{syst}}(5)_{\text{model}}(2)_{\text{group}}$ fm.

 $Q^2 > 0.004 \text{ GeV}^2$

G.I. Gakh, A. Dbeyssi, E.T-G, D. Marchand, V.V. Bytev, Phys.Part.Nucl.Lett. 10 (2013) 393, Phys.Rev. C84 (2011) 015212

²*→ 0*?

Planned ep experiments

Mainz ep elastic scattering

Cez

Mainz ep elastic scattering

$$\left\langle r_{E/M}^{2}\right\rangle = -\frac{6\hbar^{2}}{G_{E/M}\left(0\right)} \left.\frac{\mathrm{d}G_{E/M}\left(Q^{2}\right)}{\mathrm{d}Q^{2}}\right|_{Q^{2}=0}$$

1) Rosenbluth extraction

2) Direct extraction(assuming a function for FFs)

Spline $\langle r_E^2 \rangle^{\frac{1}{2}} = 0.875(5)_{\text{stat.}}(4)_{\text{syst.}}(2)_{\text{model}} \text{ fm},$ $\langle r_M^2 \rangle^{\frac{1}{2}} = 0.775(12)_{\text{stat.}}(9)_{\text{syst.}}(4)_{\text{model}} \text{ fm}$

Polynomial

$$\langle r_E^2 \rangle^{\frac{1}{2}} = 0.883(5)_{\text{stat.}}(5)_{\text{syst.}}(3)_{\text{model}} \text{ fm},$$

 $\langle r_M^2 \rangle^{\frac{1}{2}} = 0.778(^{+14}_{-15})_{\text{stat.}}(10)_{\text{syst.}}(6)_{\text{model}} \text{ fm}.$

International Nuclear Physics Conference 2010 (INPC2010)

Journal of Physics: Conference Series 312 (2011) 032002

doi:10.1088/1742-6596/312/3/032002

The proton radius puzzle

A Antognini^{1,2}, F D Amaro³, F Biraben⁴, J M R Cardoso³, D S Covita⁵, A Dax⁶, S Dhawan⁶, L M P Fernandes³, A Giesen⁷, T Graf⁸, T W Hänsch^{1,9}, P Indelicato⁴, L Julien⁴, C-Y Kao¹⁰, P Knowles¹¹, F Kottmann², E-O Le Bigot⁴, Y-W Liu¹⁰, J A M Lopes³, L Ludhova¹¹, C M B Monteiro³, F Mulhauser¹¹, T Nebel¹, F Nez⁴, P Rabinowitz¹², J M F dos Santos³, L A Schaller¹¹, K Schuhmann⁷, C Schwob⁴, D Taqqu¹³, J F C A Veloso⁵ and R Pohl¹

Abstract. By means of pulsed laser spectroscopy applied to muonic hydrogen $(\mu^- p)$ we have measured the $2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}$ transition frequency to be 49881.88(76) GHz [1]. By comparing this measurement with its theoretical prediction [2, 3, 4, 5, 6, 7] based on bound-state QED we have determined a proton radius value of $r_{\rm p} = 0.84184(67)$ fm. This new value differs by 5.0 standard deviations from the CODATA value of 0.8768(69) fm [8], and 3 standard deviation from the e-p scattering results of 0.897(18) fm [9]. The observed discrepancy may arise from a computational mistake of the energy levels in μ p or H, or a fundamental problem in bound-state QED, an unknown effect related to the proton or the muon, or an experimental error.

Lamb shift and hyperfine splitting (1)

Rydberg constant

Lamb shift and hyperfine splitting (1)

An e or μ in S state has some probability to be inside the proton. The electric field (charge distribution) is modified by the proton size. The v_s and v_p transitions are affected by the proton size (few %)

Lamb shift and hyperfine splitting

$$\Delta E_{\text{finite size}} = \frac{2\pi Z\alpha}{3} r_{\text{E}}^{2} |\Psi(0)|^{2} \qquad \text{Atomic wave function at the origin}$$

$$|\Psi(0)|^{2} \approx m_{\text{r}}^{3}, m_{\text{r}}(\mu p \text{ system}) \cong 186 m_{\text{e}}$$

$$\text{H radius : 60000 \times p \text{ radius}}$$

$$\mu \text{H Bohr radius is} \approx 200 \text{ times smaller: larger sensitivity!}$$

$$\frac{1}{4} hv_{\text{s}} + \frac{3}{4} hv_{\text{t}} = \Delta E_{\text{L}} + 8.8123(2) \text{meV}$$

$$hv_{\text{s}} - hv_{\text{t}} = \Delta E_{\text{HFS}} - 3.2480(2) \text{meV}$$

$$\Delta E_{\text{HFS}}^{\exp} = 22.8089(51) \text{ meV}$$

$$E_{\rm L}^{\rm th} = 206.0336(15) - 5.2275(10)r_{\rm E}^2 + \Delta E_{\rm TPE}$$

$$\Delta E_{\rm TPE} = 0.0332(20) \text{ meV}$$

$$r_{\rm E} = 0.84087(26)^{\rm exp}(29)^{\rm th}$$
 fm
= 0.84087(39) fm

Journal of Physics: Conference Series 312 (2011) 032002

doi:10.1088/1742-6596/312/3/032002

IOP Publishing

The proton radius puzzle

A Antognini^{1,2}, F D Amaro³, F Biraben⁴, J M R Cardoso³, D S Covita⁵, A Dax⁶, S Dhawan⁶, L M P Fernandes³, A Giesen⁷, T Graf⁸, T W Hänsch^{1,9}, P Indelicato⁴, L Julien⁴, C-Y Kao¹⁰, P Knowles¹¹, F Kottmann², E-O Le Bigot⁴, Y-W Liu¹⁰,

Binding energy

The Proton Size (Radius)

Cea