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Problems, Solutions and other links

Problem sheet: https://tinyurl.com/TeshepProblems
Solutions: https://tinyurl.com/TeshepSolutions
Jupyter Workbook for Monte httos://tinvurl.com/TeshepM

Carlo a la TESHEP

Solutions: https://tinyurl.com/TeshepMCSolved
olutions:

Additional Jupyter notebooks to play around with:

https://tinyurl.com/TeshepStatCode

Links for installing jupyter and anaconda:

http://jupyter.readthedocs.io/en/latest/install.html
https://docs.anaconda.com/anaconda/
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Statistics,Probability and Physics
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Statistics,Probability and Physics
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Interpretation of data

measurement errors, statistical fluctuations, Central Limit Theorem,

confirming & rejecting theories, what constitutes a discovery?
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A —=CC at 3.5 GeV?

SELEX see it twice
SELEX 2002
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A —=CC at 3.5 GeV?

SELEX see it twice
SELEX 2002

FOCUS, BaBar,
BELLE, LHCb don’t
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Higgs: true or false”
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http://www.science20.com/a_quantum_diaries_survivor/true_and_false_discoveries_how_to_tell_them_apart-141024

Higgs: true or false”

false Higgs (ALEPH/LEP 1996)
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Higgs: true or false?

false Higgs (ALEPH/LEP 1996
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True and False

False top (1985)
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True top (19906)
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True & False: Pentagquark

false, 2004, H1 (DESY) true (LHCb, 2015)
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=cc at LHCb?
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When did this become a discovery?
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Discoveries...
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Discoveries...

e Particle physics is rife with false hints of discoveries - even the
Higgs was seen and unseen at several energies before the LHC
had its famous 50 discovery.
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Discoveries...

e Particle physics is rife with false hints of discoveries - even the
Higgs was seen and unseen at several energies before the LHC
had its famous 50 discovery.

* The problem: Nature does not allow us a direct view on its
fundamental parameters.
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What we want
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What we get from Sébastien
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What we get from experiments
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Statistics and Measurements

Jonas Rademacker Statistics

TESHEP 2018

13



Statistics and Measurements

e Each measurement is messed up by millions of little perturbations that we
cannot possibly all take into account, or even know about, individually.
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Statistics and Measurements

e Each measurement is messed up by millions of little perturbations that we
cannot possibly all take into account, or even know about, individually.

e Statistics is the tool that allows us to separate the effect of those fluctuations
from the underlying data. And it provides us with tools that tell us how
confident we should be in our measurements.
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Statistics and Measurements

e Each measurement is messed up by millions of little perturbations that we
cannot possibly all take into account, or even know about, individually.

e Statistics is the tool that allows us to separate the effect of those fluctuations
from the underlying data. And it provides us with tools that tell us how
confident we should be in our measurements.

¢ After this lecture, you won’t discover a false ¢ (OK, it’s too late for that
anyway) or a false Z’. | hope. Discover something surprising, and real!
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For a physics Masters/Ph.D....
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For a physics Masters/Ph.D....

e You’ll be looking at and interpreting a lot of data.
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For a physics Masters/Ph.D....

e You’ll be looking at and interpreting a lot of data.

e You’ll deal with a few basic distributions
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For a physics Masters/Ph.D....

e You’ll be looking at and interpreting a lot of data.
¢ You’ll deal with a few basic distributions

e Gaussian, Poisson, binomial, ... (and possibly a few
others that you’ll pick up as you go along)

Jonas Rademacker Statistics TESHEP 2018 14



For a physics Masters/Ph.D....

e You’ll be looking at and interpreting a lot of data.
¢ You’ll deal with a few basic distributions

e Gaussian, Poisson, binomial, ... (and possibly a few
others that you’ll pick up as you go along)

e You’ll deal with error estimates and error matrices

Jonas Rademacker Statistics TESHEP 2018 14



For a physics Masters/Ph.D....

e You’ll be looking at and interpreting a lot of data.
¢ You’ll deal with a few basic distributions
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For a physics Masters/Ph.D....

e You’ll be looking at and interpreting a lot of data.
¢ You’ll deal with a few basic distributions

e Gaussian, Poisson, binomial, ... (and possibly a few
others that you’ll pick up as you go along)

¢ You’ll deal with error estimates and error matrices
¢ You’ll measure parameters doing likelihood and x2 fits

¢ You’ll need to translate physics into PDF’s
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For a physics Masters/Ph.D....

e You’ll be looking at and interpreting a lot of data.
¢ You’ll deal with a few basic distributions

e Gaussian, Poisson, binomial, ... (and possibly a few
others that you’ll pick up as you go along)

¢ You’ll deal with error estimates and error matrices
¢ You’ll measure parameters doing likelihood and x2 fits
¢ You’ll need to translate physics into PDF’s

e You’'ll interpret the fit result: what’s the error? Is it a
discovery? Are the data consistent with the PDF?
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EVENTS /25 MeV

Describing
Data

Probability and probability
distributions, Probability
density functions

Central Limit Theorem

Discoveries
Confidence Levels
Hypothesis testing

Fitting Monte Carlo simulation
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Today: Describing Data

e Describing real data.
¢ Displaying them

¢ Describing them with meaningful, “characteristic” numbers.

Jonas Rademacker Statistics TESHEP 2018 16



Histograms vs Bar Charts

* Bar chart: length « # events. =~ Histogram: area o # events.

Binwidth matters!
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Books

e R. J. Barlow: “Statistics”, John Wiley & Sons,
ISBN 0-471-92295-1.

e | ouis Lyons: “Statists for nuclear and particle
physicists”, Cambridge University Press, ISBN 0-521-
37934-2

e Frederick James: “Statistical Methods in Experimental
Physics”, World Scientific, ISBN 981-270-527-9 (pbk).

Jonas Rademacker Statistics TESHEP 2018
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Problems

Problem sheets:

https://tinyurl.com/TeshepProblems

Code (Jupyter Notebooks):

https://tinyurl.com/TeshepStatCode
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https://tinyurl.com/TeshepProblems

Describing data with numbers

e How do we describe a set of measurements with just a couple
of characteristic, meaningful numbers?

Jonas Rademacker Statistics TESHEP 2018 20



From: Visualising Economics
http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

Central Values
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(1/N) Xi=1N Xi

TESHEP 2018

23



o
= S 1
O S
ERG H —
=Y . >
%) . v
S+ 2
) 3t o
m ‘e . d -
O =3
®) 5 0 I
= "
[ -
n s
e = y
...... o
DL e P 1
B O --smzzEzzEE v
IQ ------------- v -
m5 ................ -
Q9 | ---EEEEEEEEEEEzEEIEEa o
o — . ......................... A — -
CJI e A L LR L L R LR L A ALl 1
/ M .............................
_I_L6 \u. ................... . .
o0 @
c o o
2 o |
S £ S
a2 3 e e
V -
A P
gL ~ 44
s & N
2 = -4
m |
O
5 L K K
I caaq
o
z casaas
>
W  EEEE K
g taqaaas
. i
m EEEEEEE K.
EEEEEREEEEER K
EEEEEEEEEEEE K|
 EEEEEEEEEEEEEE K

Annual Ingome

EEEEEEEEEEEELELEEELEL NS
.....................y
ti¢409¢444¢4¢0900%u1It1t111401 L1
«a“$¢0¢04¢¢%%9.0..060a001110L1
."“0n000100Mb'@08$6@0°@1051/0$1.€.m0°u°4680€,0.:61 111118141
 EEEEEREREEERRE R R R KR

24

TESHEP 2018

Statistics

Jonas Rademacker


http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

o
= S 1
O S
b m . . w
2 [ . =
o 3 . w
9 $: 2 S
@ 4 (o)
m Za . ﬂ -
@) =3
®) ] 0 I
g i .
[ -
n s
e < = .
...... o
DL e P 1
B O --sEzzEzEzs v
— Q ............. v -
£ xR —~
Q Of I sescecsessssacsescoens o
m ﬁ .—« . -.“-““.“-““....“-““.“-.“ h -
/ w ............................. 1
E 6 \.ﬂ ................... . .
o0 @
c (=)
2 o |
S £ 2
a2 3 e e
V -
A P
=2 : 44
s £ N
2 = e
S !
o
S (KK
I 'YL
g
z csaas
>
W  EEEEK|
g tacaaa
= i
m EEEEEEE K|
EEEEEEREEEE K|
EEEEEEEEEEEE K|

Annual Ingome

I EEEEEEEEEEEEELEEEEELIN
I“VjiumnmGu7muuauut@$u4ttdt118104144

(46K)

lan

med

24

TESHEP 2018

Statistics

Jonas Rademacker


http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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mean (63K)

From: Visualising Economics:
http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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Mean

e For all practical purposes we will usually use the
arithmetic mean: (1/N) Zi=1 N Xi

e Motivated to a large degree by its friendly mathematical
properties.

e But other central values, other means exist (see also harmonic,
geometric, etc) and they have their uses.

Jonas Rademacker Statistics TESHEP 2018 25



Width
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Variance

¢ \We could calculate the total difference from the mean:

d = Zi-1n (Xi— X) but that’s zero by the definition of the mean
(check!)

® The variance is the average (difference)? from the mean, the
variance:

oV =(x-X)2=1/N Zi=1,n (Xi - X)2

Jonas Rademacker Statistics TESHEP 2018 27



Calculating the Variance

5 —2 Home work:
V =x°-7 verify this

¢ |n words: The variance is equal to
THE MEAN OF THE SQUARES
MINUS
THE SQUARE OF THE MEAN

e You’ll always get the order of the terms right if you imagine a wide
distribution centered at zero. T° would zero, 12 positive and large, and the
overall variance must not be negative.

Jonas Rademacker Statistics TESHEP 2018
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Standard Deviation

e The Standard Deviation is the square-root of the variance:

c=VV

e The Standard Deviation has the same units as the data
itself.

e |t gives you a “typical” amount by which an individual
measurement can be expected to deviate from the mean.

¢ Usually, a measurement that’s one or two o away is fine,
while 3 o will raise a few eyebrows. We’ll quantify later
what the probabilities for 1, 2, 3 o deviations are under
certain (common) circumstances.
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FWHM and standard deviation

¢ For Gaussian distributions
= (why these are so
Entries 10000 important! Iater):

450
Mean -0.007028
400
S .
350 o " FWHM = 2.350
Underflow 0
300 Overflow 0
200 * Check histogram on the left:
150
100 o =RMS = 1.0,
50

s 4 2 0 2 4 6FWHM=1.2-(-1.2) =24

Close enough.
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Covariance

e Consider a data sample where each measurement
consists of a pair of numbers: {(x1, y1), (x2, y2), ...}

® The covariance between x and y is defined as:
N
1=

cov(z,y) = % Z (i — ) (y: — )

1

* The covariance between two parameters is a quantity
that has units; its value depends on the units you
chose, difficult to interpret.

Jonas Rademacker Statistics TESHEP 2018

31



Covariance

e Consider a data sample where each measurement
consists of a pair of numbers: {(x1, y1), (x2, y2), ...}

® The covariance between x and y is defined as:
N

1 _ _

cov(x,y) = N ;_1 (x: — ) (y: — 7)

* The covariance between two parameters is a quantity
that has units; its value depends on the units you
chose, difficult to interpret.
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Correlation Coefficient

e The correlation coefficient is defined as:

cov(x,y)

Pxy —
Oy + Oy

¢ [t has no units and varies between -1 and 1. This
provides a measure of how related to quantities are.

¢ For independent variables, p=0 while the correlation
coefficient of a parameter with itself (can’t get more

correlated) is: cov(zx, )
Prxr =
Oy * Og
Var(z) o2
_ 2
(0 0%

Jonas Rademacker Statistics TESHEP 2018
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Correlation Coefficient Examples
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ar a3 : :
E r 3F
3 L 2- of 4
2;_ S £ é 7
C s |
1= oF a
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2§ -25_ a:: -2;_ &
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Correlation Coefficients Examples

e Correlation coefficients can be positive or negative:

T s ol
2_ ) 3_ bl o
1 2r Z ’
o;— 1‘
4 4
3 ) 2F
-4;_....|....|....|....|....|....|....|....|.... -3f e
5 4 3 2 10 1 2 3 4 S T P T P P P

3 2 -1 0 1 2 3
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The Covariance/Error Matrix

* For N variables, named x(), ..., x(N)

Vi, = cov(:z:(i),a:(j))
( COV($(1)7Q;(1)) COV($(1)’:E(2)) COV(x(l)’m(N)) \
Vo cov(x®, 2D cov(z® @) .. cov(z® )
\ cov (@™, M) cov(@®™,2®) . cov(e®™, 2 )

e Symmetric. Diagonal = variances. Off-diagonal: covariances.

e Will become very important when we discuss errors and
multidimensional parameter transformations.
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The Correlation Matrix

* Defined equivalently, for N variables x(1), ..., x(N)

cov (2@, 2))

Pij =
J 0'in
( I pi2 - pinN \
p21 1 -+ pon
p = . . .
e symmetric \ pPN1 PN2 ] /

e diagonal = 1

e Related to covariance matrix by:
Vij = pij 0i0;
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Correlation and Causality

e Statistics does not tell us if two correlated variables are
also connected by causality, i.e. if one causes the other.

® For example there is a strong correlation between rain and
wet roads. It is clear that rain causes roads to be wet, and

that wet roads do not cause rain. But the statistics won’t
tell you that.

®* There is also a clear correlation between wet roads and the
the number of people running around with wet hair. Here

neither causes the other, but both are correlated because
they have a common cause.

Jonas Rademacker Statistics TESHEP 2018
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Correlation and Causality

e Among my favourite correlations is this one:

e During doctors’ strikes the death-rate tends to go down -
in Israel the death-rate went down by 39% in a recent
doctors’ strike. So there is a positive correlation between
life-expectancy and the number of doctors on strike (this
phenomenon has been observed in other countries, t00).

Does this mean that fewer doctors would be good for the
nation’s health?

e |isten to this BBC programme if you like this sort of thing:

http://news.bbc.co.uk/2/hi/programmes/more_or_less/7408337.stm

Jonas Rademacker Statistics TESHEP 2018
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Homework

e Write down 100 times:

“Correlation is not causation”
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Summary: Representing Data

e Histograms: Area proportional to number of events
e | abel y-axis as Number of Events/(bin size) as in N/(4 GeV)

e Central value: Usually use arithmetic mean. Nice: Means add
up. (i.e. <X + y> = <x> + <y>)

e Width: Use standard deviation. Standard deviations do not add
up. Variances do, i.e. V(x+y) = V(x) + V(y) (if variable
uncorrelated).

e Multiparameter distributions: Covariance, Correlation.

Jonas Rademacker Statistics TESHEP 2018
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Correlation is not causation.

Summary: Representing Data
e Histograms: Area proportional to number of events

e | abel y-axis as Number of Events/(bin size) as in N/(4 GeV)

e Central value: Usually use arithmetic mean. Nice: Means add
up. (i.e. <X + y> = <x> + <y>)

e Width: Use standard deviation. Standard deviations do not add
up. Variances do, i.e. V(x+y) = V(x) + V(y) (if variable
uncorrelated).

e Multiparameter distributions: Covariance, Correlation.
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Blur

https://www.youtube.com/watch?v=SSbBvKaM6sk

h /Iwww. .com/watch?v=WDswiT87
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We only ever see a slightly blurred picture of nature

‘~"‘ "‘
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Why the blur is Gaussian

X £
X
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Rolling Dice (macro)

localhost:8888/notebooks/CentralLimitTheoremWithDice.ipynb#

https://tinyurl.com/TeshepStatCode
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Rolling more and more dice
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Rolling more and more dice

100000 tries throwing 1 dice

8 Entries: 100000
£16000 o

o Mean 3.496
§ 14000 RMS = 1708
212000 Underflow 0
£ 10000 Overflow 0

0b—L I R R L0
4 5 6 7 8 9 10
Result of throwing 1 dice

Frequency of result a
=y
[=}
[=}
o

a
o
-
N
w
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Rolling more and more dice

100000 tries throwing 1 dice

_8 E Entries 100000
=16000— : : :

o E Mean 3.496
§ 14000( RMS |  1.708
S 12000 Underflow | 0
2 10000F Overflow 0
© C : : :

S 8000F

a C

2 6000

k3 o

> 4000

g oo

o 2000

= - H : : : ;

g 0t i i i i i

o -1 0 4 5 6 7 8 9 10

Jonas Rademacker

Result of throwing 1 dice

100000 tries throwing 4 dice

10000

Frequency of result after 100000 tries

Statistics

Entries 100000

Mean 14.01
RMS 3.422
Underflow 0

Overflow 0

5

10

15

20

Result of throwing 4 dice
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Rolling more and more dice

100000 tries throwing 1 dice

Frequency of result a

100000 tries throwing 16 dice

Frequency of result after 100000 tries

Jonas Rademacker

6000

5000

4000

3000

2000

1000

0

Entries ‘ 100000
Mean |  3.496
RMS |  1.708
Underflow : 0

Oyerﬂoyv P00

[]
—

o

4

5

6

7

i
8 9 10

Result of throwing 1 dice

(|

Entries 100000

Mean 56.02
RMS 6.843
Underflow 0
Overflow 0

NI |

20

50

60
Result of throwing 16 dice

70

80 90

100000 tries throwing 4 dice

10000

2}
o
(=}
o
TT T [T T T [T T T[T T T[T T T[T 1
[ [ [ [ [

Entries 100000

Mean 14.01
RMS 3.422
Underflow 0

Overflow 0

Frequency of result after 100000 tries

o

Statistics

5

10

15

20

Result of throwing 4 dice
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Rolling more and more dice

100000 tries throwing 1 dice 100000 tries throwing 4 dice
(7] F (7] F
Q@ - Entries: 100000 dz) L Entries 100000
é 16000 E Méan ?.496 é 10000 :_ Mean 14.01
S 14000 RMS | 1.708 S C RMS 3.422
212000F Underflow = 0 = 8000 Underflow 0
g 10000 E_ Oyerﬂoyv P00 g’ N Overflow 0
s C o S 6000
S 8000 E] C
8 coook 8 000k
= 6000 ~ 4000
© = k] C
2 4000 2 2000k
& 2000F & r
g' E : | | | i g' L 1 1 1
| | | | | 1 A R T T [N T TR T T SN T TR T T N SR T L1
£ 93 01 2 3 45 6 7 8 9 10 g 0 5 10 15 20
Result of throwing 1 dice Result of throwing 4 dice
100000 tries throwing 16 dice 100000 tries throwing 64 dice
) [ ()] r
o 6000[ Entries 100000 2 3000 Entries 100000
pay C Mean 56.02 pat C Mean 224
§ 5000: RMS 6.843 § 2500 RMS 13.68
o - =] L
- - Underflow 0 - C Underflow 0
». 4000 » C
] - Overflow 0 9 2000 r Overflow 0
S 3000 s :
§ C § 1500
7 C 7 C
o C o C
= 2000 « 1000
o u o C
> C > r
g 1000 S  500F
Q - Q -
=} - =} o
g | ol IS I P P | o | P R R RPN T~ P PR B
T 20 30 40 50 60 70 80 90 r 100 150 200 250 300
Result of throwing 16 dice Result of throwing 64 dice
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Comparing Gaussians to 1, 4, 16, 64-dice
distributions

100000 tries throwing 1 dice 100000 tries throwing 4 dice
£ 22000F Rl $12000F _—
- 20000 :_ sl S 1.702 ; L RMS 3.42?,
8 E vorton > 10000 oveton :
S 18000F x/ndf | 1.855e407/9 =1 L /ndt 1.08e+04/24
o = rol o - rol
~ 16000 E_ Zunbstant z.azem:s(: ~ 8000 Zm:mm 1650104 .48
214000 ::f:a ?::; ; g:ggf g o l\slli:a:a 3.42154;5(::.0‘::
© — — o] -
- 12000E = 6000—
210000 = C
£ so00;- £ sooof
o = o L
> 6000E > r
g 4000t / \ £ 2000
S 2000F g C
g 0—/ g 0 N B SR B
T 1 0 1 2 3 4 5 6 7 8 9 10 T 5 10 15 20
Result of throwing 1 dice Result of throwing 4 dice
100000 tries throwing 16 dice 100000 tries throwing 64 dice
§ oo e $ sooof -
- - RMS 6.843 - - RMS 13.68
o = Underflow 0 o - Underflow 0
S 5000 erflow 1= r verflow
S o fﬂ"/ et 112.2/52 S 2500 F ;’2/::;1 154.7/322
9_ C Prob 0.02149 9_ E Prob 1
5 40000 et 5 20000 el
= L Sigma 6.843 + 0.015 b= - Sigma 13.68 + 0.03
= 3000F = :
£ n £ 1500
7} o @ o
S 2000 > 1000F
5 . k] o
> C > r
2 1000f- g 5001
] o =] o
g | rol PPN BT B TP NP | g ob——te A N
r 20 30 40 50 60 70 80 90 e 100 150 200 250 300
Result of throwing 16 dice Result of throwing 64 dice
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Comparing Gaussians to 1, 4, 16, 64-dice
distributions

100000 tries throwing 1 dice 100000 tries throwing 4 dice
0 " 0
222000 \ il 812000
- RMS 1.708 -
S 20000 Uriderflor ) =3
S 18000 Tt 1as5es07/9 S
=) =]
~ 16000 z::;bstant 2.32e+04 = 9(: -
Mean 3.987 = 0.005
214000 sigma__ 1.72340.004 2

. (l'"|"'|"'|"'|"'|"'|"'|"'I"'|III|||

©12000
210000

S

k]

>

(3]

=

o /
=

g

£ 0

Result of throwing 4 dice

10000 100000 tries throwing 64 dice

g6 8 3000F Moanw oo
= = C RMS 13.68
8 8 r gnd:;lnw g
8 X 112.2/84 8 2500 :_ x’vfndgw 154.7/324
9_ Prob 0.02149 9_ E Prob 1
. 4000 Coren 5022 T 20005 A
b =4 6.843 = 0.015 b= - Sigma 13.68 + 0.03
< 3000 = -
= : £ 1500
7} o @ o
o - [ -
= 2000 « 1000
o - o -
& 1000 8 sook
c 1000 c 500
[ n [ -
= o ) = r
g | rof IR I B TP R B | g ob——te A N
o 20 30 40 50 60 70 80 90 o 100 150 200 250 300

Result of throwing 16 dice Result of throwing 64 dice
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Gauss on old money
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bokeh serve jonas_singletoy.py

localhost:5006/jonas_singletoy
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The Central Limit Theorem

¢ Take the sum X of N independent variables x;

e Each x; is taken from a distribution with mean (x;) and variance V; =

a.
Variances add up!
e Then (Standard
deviations don’t)
e X has an expectation value (X) =% (x;) l

¢ X has a variance (the square of the standard deviation, V=02) V(X) =
2 V.

¢ The distribution of X becomes Gaussian as N— .
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Central Limit Theorem holds in the centre, not
iNn the tails(!)

10000000 irics throwing 4 dice 10000001 s throwing 16 dice

(@

O Entries 1e+07 oSOV 1e+08
A 14 A 10° 56
3 10° 3.415 2 6.831
2 0 S 1 0
S 0 g 10 0
S 10° =]
=) 9.873e+07 /40 8 10* 3.559e+04 / 100
[ 3 0 - 0
2 10 168e+06 = 452 8 107 Constant R\84e+06 = 715
e 2 14.5+ 0.0 T Mean 56.5+ 0.0
5 10 415 = 0.001 = 102 831+ 0.000
4 ?
- 10 ® 10

©
g 1 g
5 2
g 1 0_1 1 111 sa ol Lo a Q 1 0-1 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 l 1 1
g 20 25 30 35 z 20 40 60 80
e Result of throwing 4 dice o Result of throwing 16 dice

¢ Central limit theorem ensures that within a few sigma of
the mean, we get a good approximation to a Gaussian.

e Differences remain in the tails of the distribution (doesn’t
have to be fewer events, such as here, can also be more).
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(Gaussians, errors, confidence

e Within £10: “10 Confidence Level”,
or “68.27% Confidence level”

1
1 22
e 2 dx = 68.27%
/1 V2T C

e Within +20: “20 CL” or “95.45% CL”

1 22
e” 2 dx = 95.45%
/2 Vo C

. Wi{Shin1:30: “30” or “99.73% CL”
| _%e—%da: — 99.73%

Jonas Rademacker Statistics
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Talking to Engineers

¢ Physicists quote their errors as 10
(Gaussian) confidence intervals.

e The probability that a result is outside
the quoted error is 32%. About 1/3 of
measurements should be outside the
error bars. Results outside error bars
are OK - it just shouldn’t happen too
often. And it shouldn’t be too far:

P(outside ux2c) ~5%, P(outside "What we've got here
pux30) ~0.3%) S...failure to communicate.
» Engineers guarantee that the actual SOme men you just can't

value is within mean = tolerance. reach.

Jonas Rademacker Statistics TESHEP 2018 53
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https://tinyurl.com/TeshepProblems
Which plot makes most sense”

What is the most plausible plot if the line represents theory, dots data
distributed according to that theory, and the vertical lines are 16 error bars.

BYE exp
400
400:— o
3502 350E
300 300¢
250F 250
200 200F
150F 150F
100F 100F
50F 50F
PP R I EPE EPEPE BT BT BT IR P -
%2040 ""60™ 0 100 20 a0 fo0 ad 400 0536306080 700 720740160780 200
exp exp
£ 200
350 180F
300F 160E
- 140
250; 120F
200F 100F
150F 80F
100F- 60F
E 40F
505— 20F
) PP U I U I I T B IO 03...|...|...|...|...|...|...|...|...|...
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
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What’s the uncertainty on the mean?

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08F Mean 30
0.07 O = asss3
0.06 f_ Underflow 0
0.05 E_ Overflow 0
0.04F
0.03F
0.02F
0.01

0 n N P B
0 60 80 100

r for N =100, p = 0.300
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|dea of “idea

gauss

|”

gauss

parent sample

Ideal parent
sample, in limit of

o
w

200
180
160
140
120
100

TTTTTITTTTTITTTI T TITT ITTTITTTTITI]TTIT]X
RN RN RN LR RN RN LN R R t%

infinite statistics
(practically
inaccessible)

— N w S o [=2]
TIT T T T[T T T T[T T T T[T T T T[TTT T[T

Entries 10

Mean -0.07611
RMS 1.233

Underflow 0

Overflow 0

6

Uncertainty on the mean: if | repeat the measurement with N data points again and
again, and record each time the mean, what is the width/standard deviation of that

Jonas Rademacker

distribution?
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Central Limit theorem

e Take the sum X of N
independent variables x; [as
in the case of the
radioactive cats].

e (X) =2 xi)

. \/%irhaj1(:€>‘VY)<) =:;z'\‘ﬁ ':::::::::::::::::::::::::::::::::::::::::l

o Std dev. o5y = (X Vi)~ the 1st miracle of |N

e Gaussian as N— .

Jonas Rademacker (Bristol) Statistics TESHEP 2015



Central Limit theorem

¢ Take the sum X ‘_)f N * Take the average Y of N
independent variables x; [as independent variables xi
In the case of the Y=3xi/N.

radioactive cats].

e (Y) =X (xi) /N

o (X) =X (xi) e V(Y)=(Z Vi)/N2
if all Vi the same: = Vi/N

e Variance V(X) = 2 V..

e Std dev. o5y = (X Vi)* the 1st miracle of |N

e Gaussian as N— . e @Gaussian as N .

Jonas Rademacker (Bristol) Statistics TESHEP 2015



What’s the uncertainty on the mean?

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08F Mean 30
0.07 O = asss3
0.06 f_ Underflow 0
0.05 E_ Overflow 0
0.04F
0.03F
0.02F
0.01

0 n N P B
0 60 80 100

r for N =100, p = 0.300
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What’s the uncertainty on the mean?

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08F- Mean 30 Omean = O/ \/N
0.07F O = 458
0.06 E_ Underflow 0
0.05 E_ Overflow 0
0.04F
0.03F-
0.02F-
0.01F

0 n A R R
0 60 80 100

r for N =100, p = 0.300
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What’s the uncertainty on the mean?

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08F- Mean 30 Omean = O/ \/N
0.07F O = 458
0.06 E_ Underflow 0
0.05 E_ Overflow 0 N —_ 1 O 1
0.04F
0.03F
0.02F
0.01F
0 n A R R
0 60 80 100

r for N =100, p = 0.300
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What’s the uncertainty on the mean?

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08F- Mean 30 Omean = O/ \/N
0.07F O = 458
0.06 E_ Underflow 0
0.05 E_ Overflow 0 N —_ 1 O 1
0.04F
0.03;— Omean = 046
0.02F-
0.01F
0 n A R R
0 60 80 100

r for N =100, p = 0.300
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Further important theoretical distributions...

* |n the next few slides I'll introduce the binomial and the Poisson
distribution - you will meet them a lot in your particle physics
research!
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The Binomial Distribution

e Fixed number of “trials” (measurements),

e Two possible outcomes, usually termed “Success” and
“Failure” (but can be green and orange, or >5 and <=5, or
anything else mutually exclusive).

* The probability for a success in a single trial is p.

e Question: What is the probability to get r successes and (/\'-r)
failures in IV trials:

(whiteboard)
P(r; N, p) =?

Jonas Rademacker Statistics TESHEP 2018
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The Binomial Distribution

number of “successes” probability of failure in single trial

(11 7
probability of success in single trlal number of “failures

P(r; N

||

=
|

=

=

;

number of different sequences
In which one can haver
successes and N - r failures
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Binomi Examples

Theory with N =0, p = 0.300

T 1 N Ehtries 1

- Mean 0

0.8 RMS 0

B Underflow 0

0.6 L Overflow 0
0.4 N
0.2~

oL |
-1 1 2

Theory with N =2, p = 0.300

rfor N=0, p =0.300

§ 0.5 :_ Entries: 3

- Mean 0.6

04— RMS |  0.6481

C Underfiow 0

0.3F Overflow 0
0.2
0.1

ot i
-1 2 3 4
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rforN=2, p=0.300

Theory with N =1, p = 0.300

Statistics

P(r)

0.7
0.6
0.5
0.4
0.3
0.2
0.1

lllllllllllllllllllllllllllllllllll

Entriés
Meaﬁ
RMS%
Undérflow

Overflow

2
0.3

0.4583

0
0

0

Theory with N = 3, p = 0.300

;_5 0.45
0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

2

rfor N=1, p =0.300

3

E_ | Entries : 4
= Mean = 0.9
= RMS | 0.7937
=  Underflow 0
§_  Overflow 0
F L |

-1 3 4 5

r for N =3, p =0.300
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Binomi Examples

Theory with N =10, p = 0.300 Theory with N = 100, p = 0.300

§ r Entfies 11 § 0.09 E_ Entries 101
0.25 :_  Mean | fg 0.08 ;_ Mean 30
C L RMS | 11449 0.07 RMS 4.583
0.2  Underflow 0 0.06F- Underflow 0
015 E_ Ovejrflom% ()} 0.05 z_ Overflow 0
C 0.04F
0.1 0.03F
C 0.02F
0.05[ E
C 0.01F
ok [ T R T T R okt N R B SR
-1 01 2 3 45 6 7 8 9 10 1112 20 40 60 80 100

r for N =10, p = 0.300 r for N =100, p = 0.300

Th ithN=1 ,p=0.
e 000, p =0.300 10000 tries with N = 10000, p = 0.300

T - Entries 1001 3 L Entries 10000

0.025 :— Mean 300 Py 100 - Mean 3000

- RMS 14.49 § C RMS 45.76

0.02— Underflow 0 - 80 Underflow 0

E Overflow 0 -.“ﬂ:e - Overflow 0
0.015F < 60
C = B
C o -
0.01 S a0
» o L
C oy L
0.005 s 20
- =2 -
C T B

0 PR IV S VO I I I 90...|...|...|...|...
0 200 400 600 800 1000 L 0 2000 4000 6000 8000 10000
r for N = 1000, p = 0.300 Successes for N = 10000, p = 0.300
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Binomi Examples

Theory with N =4, p = 0.500

—~
S
N—"

% 035

0.3
0.25

0.2
0.15
0.1

0.05

Ei’ltries
Miean
RMS

Underflow:

Oéverflow
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r foérlN = 4,5p = 0.%00
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Example: Lightning

* The Poisson distribution describes
sharp events in a continuum.

® There is still a fixed outcome
(flash), but not a fixed number of
trials. It doesn’t make sense to ask
how many non-flashes we saw.

e But we can ask how many flashes
we expect to see in a given time
interval. Or clicks in a Geiger
counter.

photographs of lightning in an urban setting In:"Thunder and Lightning", Camille

Lightning striking the Eiffel Tower, June 3, 1902, at 9:20 P.M. This is one of the earliest
Flammarion, translated by Walter Mostyn Published in 19086.
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Binomial = Poisson

o We'll start with our trusted Binomial Distribution.

P(r;N,p) = p" (1-p) ( T)

e How can we modify it such that it describes the number of
flashes in a continuum?
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Binomial = Poisson

e Strategy:

¢ Divide the time over which we observe the sky and count
flashes into small intervals.

¢ [f the intervals are small enough, we do have a binomial
distribution - each interval is a trial and can have two
outcomes, success (flash) or failure (no flash).

¢ Important: The intervals must be so small that we can get
at most one flash - otherwise we would have more than
two possible outcomes (0, 1, 2, ,... flashes), and the
binomial distribution would not work.
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e _..derivation on whiteboard, if time permits

N

7!

P(r;\) =e

Jonas Rademacker Statistics TESHEP 2018 69



rI(N —r)!
A" AN\
o= (1-3) e
_X (1 _ A)N” N
r! N NT(N —r)!
N (1_3)“? N(N —1)(N —2)--- (N —r+1)
7! N NT
N (1 - A>N (1 - i)‘r N+ oqN™"L 4 ap N2
! N N N
lim P(r;N,\) = £e>‘ (1)~" (1 —I—Ozi +042L + )
N —o00 r! N N2
=YW
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P(r;- N, p)-&=p2Ar-(1-p)YN-r} \frac{N{r! (N-r)!}
\
P(r; N, \lambda) &=
\frac(\lambda’rK{NAr} \left(1-\frac(\lambda}{p\right) \N-r} \frac{N!Xr! (N-r)!}
\
&= \frac(\lambda’rXr!}
\left(1-\frac(\lambda}{NH\right)N-r}
\frac{N!{N*r (N-r)!}
\
&= \frac(\lambda’rXr!}
\left(1-\frac(\lambda{N}\right) {N-r}
\frac{N(N-1)(N-2)\cdots (N-r+1){N"r}
\
&= \frac{\lambda’r}{r!}
\left(1-\frac{\lambda}{NH\right) NN}
\left(1-\frac(\lambda{N}\right)\{-r}
\frac{N/r + \alpha_1 N/Nr-1} + \alpha_2 NNr-2} \cdots{N*r}
\
\lim_{N\to\infty} P(r; N, \lambda)
&= \frac{\lambda’r}{r!}
e\lambda} \left( 1 \right){-r}
\left( 1 + \alpha \frac{1XN} + \alpha_2 \frac{1 {N”*2} + \Idots \right)
\
& = \frac(\lambda’r{r!}
e\lambda} \left( 1 \right){-r}
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. A"
Poisson Summary  P(r;)) =e & —

7!

¢ Describes cases where we do not have a fixed number of trials, but
discrete events in a continuum.

¢ [t has only one single parameter - the expected mean number of
events, A.

(r) =A

o= V)

e The probability to see r events, given an expected mean of A, is:

)\T
P\ =e =

r!
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' )\7“
Poisson Summary — P(rA) =e =

7!

¢ Describes cases where we do not have a fixed number of trials, but
discrete events in a continuum.

¢ [t has only one single parameter - the expected mean number of
events, A.

(r) =A

o = @ the 2nd miracle of |/N.
If | expect N évents, the uncertainty on this is \/N, and the relative uncertainty is \N/N = 1/{/N.

e The probability to see r events, given an expected mean of A, is:

)\T
N\ =
P(r;\) =e )
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Binomial = Poisson

e ... our derivation (if we did it) implies that the Poisson
distribution with A=Np is a decent approximation of the
Binomial distribution in cases where p is small and N is large.
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Poisson — (Gaussian

Theory with lambda = 0.500

g 0.6 ;—— Entries 1
o F Mean 0.5
£ 05 RMS 07071
[« % -
F Underflow 0
04
F Overflow 0
03 —
s B .
0.2 /\ — C) E’
F - U
0.1
ok

o
-
N
w
N

5 6

7 8 9 10

r for lambda = 0.500

Theory with lambda = 10.000

? 0.12 :_ Entries 31
= L Mean 10
o L
0.1 RMS 3.162
L Underflow 0
0.08[~ Overflow 0
0.06-
o A=10
0.02F
0 b 1 1 1 1 L
0 5 10 15 20 25 30
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r for lambda =10

Theory with lambda = 1.000

E E Entries 10
E 0.35 E_ Mean 1
e RMS 1
0.25 Underflow 0
Overflow 0

0.2

>
|

1

0 1 2 3 4 5 6 7 8 9 10
r for lambda =1

0.05

Theory with lambda = 100.000

§ 0.04 ;— Entries 200
T 0.035F Mean 100
o E RMS 10
0.03 E_ Underflow 0
0.025 ;_ Overflow 0
0.02 ;—
0.015 ;—
0.01 —_—
0.005 ;—
0 E 1 1 1 1 1 1 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200

r for lambda = 100

Statistics

Theory with lambda = 2.000

§ E Entries 1
2 0.25~ Mean 2
E E RMS 414
0.2 :— °
F Overflow 0
0.15
"t }\'_ 2
0.05F 3
0 : .
0 1 2 3 4 6 7 8 9 10
r for lambda = 2.000
Theory with lambda = 400.000
§ 0.02F Entries 700
< E
i 0.018 Mean 400
2 0.016F RMS 20
0.014F Underflow 0
0.012F Overfiow 0
0.015
0.008 ;—
od 3 A=400
0.004 ;—
0.002F-
0 E 1 I 1 I I I |
0 100 200 300 400 500 600 700

r for lambda = 400
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Trinity

. _ T . -r )\T
P(r;N,p) = p" (1-p) (:T ) }%T;A)ZZG—A_T
| ~limN=, p—0, N'p=A _ r
Binomial > Poisson
P(r; N,p) N'p=A P(r; \)
lim N—co lim A= oo
N-p — u A=,
VNp(1—p) — o A0
(Gaussian
P(x; 1,0)

( L _-3(=e)
T, o = e o
il V2mo
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Homework: Which distribution?

a) The number of flashes of lightening within on hour of a thunderstorm.

b

)

) The number of Higgs events at the LHC in a year of running.
c) The number of students per hundred carrying the H1F 1 virus.
)
)

d

€

Weight of individual A4 pieces of paper in a notebook

The number of sand grains in 1kg of sand.
*H1F1 gives you bird flue

https://tinvurl.com/TeshepProblem
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https://tinyurl.com/TeshepProblems

https://tinyurl.com/TeshepProblems

More Homework - calculate significances

¢ Estimate the significance of this 7’ search at CDF
observation:
- §140: + data
* Step 1: calculate the probability  &izo More events seen

than expected —— Standard

Model
prediction

so see an upward fluctuation
this big or bigger in the
Standard Model, in this one bin

Events/(10
2 8.

20—

e Step 2: take into account that

160 180 200 220 240 260 280 300 320 340

they looked in 84 bins (tricky!) M(ee) (GeV/c)

e You should get a fairly small * Inthe bin with the arrow, we - |
. expect 28 events without the Z
number. Why, do you think, have

you not read in the news about
the discovery of the Z’ at CDF? * See 48 events.
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https://tinyurl.com/TeshepProblems

EVENTS /25 MeV

Describing
Data

Probability and probability
distributions, Probability
density functions

Central Limit Theorem

Discoveries
Confidence Levels
Hypothesis testing

Fitting Monte Carlo simulation

Jonas Rademacker Statistics TESHEP 2018
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Fitting
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Lifetime fit

e | have a decay time distribution that | want to describe with an
exponential decay distribution:

1
P(t) = —e /7

T

e Question 1: What is the mean lifetime 1?2

e Question 2: Did | pick the right function - are my data really
described by an exponential decay?
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x2 Fitting

e Use for binned data ?
e Minimise distance between f(X )
data and function that -
describes data. B ﬂ (X2)
NENEERER
0 9 X

usually oi = |Jf(xi)={ni
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

usually oi = |Jf(xi)={ni
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data and function that
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

¢ Possible definition:

d2 = Z(n(xi) - f(xi))2

usually oi = |Jf(xi)={ni
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

¢ Possible definition:

d2 = Z(n(xi) - f(xi))2

e Better: Weight by error
usually oi = |Jf(xi)={ni
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

¢ Possible definition:

d2 = Z(n(xi) - f(xi))2

e Better: Weight by error
usually oi = |Jf(xi)={ni
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

¢ Possible definition:

d?2 = Z(n(xi) - f(xi))2 I

0 9 X

e Better: Weight by error

2 Z (nmeas(xi) B f(xz))

2 usually oi = |Jf(xi)={ni

X

all bins
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e root macros go here
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Do | trust my fit”?

exp

exp
400F 400
350 ; 350 ;
300k 300F
250F 250F
200 2oo§
150¢ 150F
100; 100
50 50
Op""20""20 60 80 100 120 140 160 180 200 T R T T T Y TR T R TR T

e Your fit programme will probably converge even if you use the
wrong function. Need a way to pick this up - we want to the
quantify badness of our fit.
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Goodness of fit and x2 distribution

¢ Given this definition: N (n f )2
1 - J1
o

XQZZ

1=1

what value for x2 would you expect?
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Goodness of fit and x2 distribution

¢ Given this definition: N

X2 _ Z (nz szz)

1=1

what value for x2 would you expect?

o |f we got our error estimates right, we’d expect a typical
difference between model and data in each bin of 1.

e So we’d expect, for N bins:

x> ~ N,

2
-

=1a¥
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Goodness of fit and x2 distribution

¢ x2 definition: N

X2 _ Z (nz szz)

1=1

e However, we are not just comparing a model and data. We are
allowed to adjust the model.

e To account for the extra wiggle-room each fit parameter
provides, we define the number of degrees of freedom as

ndf = Nbins — Nﬁt parameters

e We expect X2 1

-~
Y,
Jonas Rademacker n df Statistics TESHEP 2018

86



Fit quality as a probability: How likely am | to get a fit
that bad or worse if my model is correct?

e The probability density to get a certain x2
for a given number of degrees of freedom:

1 2
P 2, df) = ndf—2 —x“/2
OCmdh) = S mar ) X ¢

e Calculate the probability, p, to get a x2this

bad or worse*
O

p = / P(x"*;ndf) d(x*)
X2
e If p is smaller than a few %, it gets a bit

worrying.

*) root does it for you, with the stupidly named function TMath::Prob
Jonas Rademacker Statistics TESHEP 2018 87



Resources for tomorrow’s problem classes:

This course:

https://tinyurl.com/TeshepProblems

https://tinyurl.com/TeshepStatCode

https://tinyurl.com/TeshepMC

External:

http://jupyter.readthedocs.io/en/latest/install.html

nttps://docs.anaconda.com/anaconda/
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https://tinyurl.com/TeshepProblems
https://tinyurl.com/TeshepStatCode
http://jupyter.readthedocs.io/en/latest/install.html
https://docs.anaconda.com/anaconda/
https://tinyurl.com/TeshepMC

Probabillities, PDFs and likelihood fitting
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Probability
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?

e [f you are female, it is only 0.026% (male: 0.069%)

e |f you are a male in Scotland, it is 0.1%
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?
e [f you are female, it is only 0.026% (male: 0.069%)
e |f you are a male in Scotland, it is 0.1%

e But what if you smoke? If you don’t? If you are a heroin-addicted
bomb-disposal expert?
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What is Probability”?

e Mathematically: Defines basic properties suchas 0 <P <1 and

calculation rules; all other definitions must satisfy also this one.
But: No meaning.

¢ Frequentist: How many times ne does something (event E) happen
if | try N times? P(E) = ne/N for N
Problem: What if | can try only once?

e Bayesian: Probability is a measure for the “degree of belief” that
event E happens. One possible definition: I'd bet up to € ne that E
happens, if | get € N if | win: P(E) = (£ ng)/(£ N).

Problem: Subjective (not good for science, but occasionally
unavoidable, e.g. for systematics.)
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Probabilities nomenclatura

* P(A) = probability that A happens

e P(A or B) = probability that A happens, or B happens, or
both.

e P(A & B) = P(A and B) probability that both A and B
happen.

e P(A|B) = “P of A given B”, the probability that A happens
given that B happens.

e Note: while P(A & B) = P(B & A), P(A or B) = P(B or A),
P(A|B) # P(B|A), for example:
P(pregnant | woman) = a few %
P(woman | pregnant) = 100%

Jonas Rademacker Statistics TESHEP 2018
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Probabillities

¢ Inside the red box everyone who likes football.

e
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Adding non-exclusive Probabillities

e What is the probability to pick
somebody who likes football
(outcome A) or the colour pink
(outcome B)?

wrong

e Not P(A or B) =P(A) + P(B),
because we would be double-
counting those who like football
and the colour pink.
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Adding Non-Exclusive Probabilities

* P(A or B)
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Adding Non-Exclusive Probabilities

e P(A or B) = P(A) + P(B) - P(A and B)
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Conditional Probabilities

* P(A given B) = P(A|B) = P(A and B)/P(B)
* P(B given A) = P(B|A) = P(A and B)/P(A)

* P(A and B) = P(A) - P(BJA) = P(B) - P(A|B)
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Bayes’ Theorem

e P(A and B) = P(A) P(B|A) = P(B) P(A|B)

e From this follows Bayes’ theorem:

P(A|B) = P(B|A) P(A)/P(B)

Jonas Rademacker Statistics
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Bayes’ Theorem Very important
theorem.

Also worth noting:
This is not Bayesian
e P(A and B) = P(A) P(BJA) = P(B) P(A|B) statistics (every
frequentist will
happlly use Bayes’
theorem)

e From this follows Bayes’ theorem:

P(A|B) = P(B|A) P(A)/P(B)
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Problem

¢ 0.01% of the population is infected with a nasty, contagious
Virus

A test for this virus is developed. This test identifies correctly

100% of those carrying the virus. Amongst those that do not
carry the virus, it gives the correct result in 99.8% of the cases.

e |If you test positive, how worried should you be? Are you likely
to be infected?
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Problem

¢ 0.01% of the population is infected with a nasty, contagious
Virus

A test for this virus is developed. This test identifies correctly
100% of those carrying the virus. Amongst those that do not
carry the virus, it gives the correct result in 99.8% of the cases.

e |If you test positive, how worried should you be? Are you likely
to be infected?

¢ Task: calculate how likely you are infected if the test is positive
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Probabilities for Continuous Distributions
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Probabilities for Continuous Distributions

e Say you have a 100 strings between 10cm and 12cm long
and measure their length.
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Probabilities for Continuous Distributions

e Say you have a 100 strings between 10cm and 12cm long
and measure their length.

e How many are 11 cm?
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Probabilities for Continuous Distributions

e Say you have a 100 strings between 10cm and 12cm long
and measure their length.

e How many are 11 cm?

e But how do we describe a probability distribution where the
probability of each event is zero?
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Probabillities for continuous variables

¢ P(x) = probability density function (PDF)

e PDFs are not probabilities. But we can use them to calculate

probabilities that we find a value between a and b
b

P(x € [a,b]) = /P(x’)dx’

a

¢ This integral is a probability. If you integrate over a small
range, such as a histogram bin of width Ax, the probability to
find an event in that bin is
P(find event in bin centered at x) = P(x)Ax
Expected number of events in that bin = Niotar P(X)AX

e BTW, the Gaussian discussed earlier is a PDF.
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PDFs for real variables

* Frequent student mistake: decide which of the three great
distributions applies (Binomial, Poisson, Gauss) based on
whether a variable is continuous or not.

e But: You can use Probability Density Functions (and Gaussians)
for discrete variables. It’s an approximation, but often a useful
one.

¢ |t’'s the same as approximating discrete people with a
population density or discrete atoms with a mass density.
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PDFs: important properties

e Normalisation - the probability that something happens is 1:
“+00

/ P(z')da = 1

— 0

e Expectation value of x, or any function of x, gives the average
expected outcome for x (function of x)

() = / o P(') da’ (f(2)) = / F(a)P(a') do

*Variance V = (x2) —(x)2
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PDFs and change of variables

e et P(x) be a PDF. Then P(x) dx is a probability.

e | et y be a function of x (suitable for co-ordinate
transformations, i.e. bijective [one-to-one], and also
differentiable).

e Then P(y) dy = P(x) dx = P(y) = P(x) dx/dy.

e This can give negative P(y) because the derivative can be negative. This would be
handled by the corresponding swap in integration limits, giving positive integrals.
We’d rather have positive PDF’s and decide that integration limits for PDFs will
always be from the lower to the higher value.

e Hence P(y) = P(x) |dx/dy| :
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y
Example: Variable Transformation %

0.1

1 P 0.2;—

—  between 0 and 10 = o8k

P _ 10 o o1er
(=) { 0 otherwise } uE

014
012
0.1F—
0.08F

2 0.06F
y—=—=x <:>$:\/§f0r33>0 0.04F

0.02F

P(y) dy = P(x) dz

P(y) = P(z)

d T 1.0/(20*sqrt(x))

dy
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Last time: X2 Fitting

e Use for binned data

SUREREEY

usually oi = |Jf(xi)={ni
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Last time: X2 Fitting
e Use for binned data
e Minimise weighted
distance between

data and function
that describes data.

Jonas Rademacker

Statistics

usually oi = |Jf(xi)={ni
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Last time: X2 Fitting

e Use for binned data

e Minimise weighted
distance between
data and function
that describes data.

|
0 9 X

2 Z (nmeas(xi) B f(xz))

2 usually oi = |Jf(xi)={ni

X

all bins
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Likelihood fits

e Define the likelihood:

all data points

¢ \View this as a function of the parameters of the PDF, here T:

L(T)= H P(t;;7)
all data points

® This gives us the probability that, given T, we see the data we see. We
adjust T to maximise this.

* Note that this does not give us the probability that T is the right value
(although we would probably quite like to know that - too bad, it’s not
what it tells us).
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Likelihood fits

e Rather than maximising this product:

L(T)= H P(t;;T)

all data points

e it is usually easier (and equivalent), to maximise the logarithm of
the likelihood, since this turns the product into a sum

InL(7) = Z In P(t;;7)

all data points
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Normalising your PDF

e This property: T
/ P(z)dzr =1

— OO

is crucial! Often you have a function f(x) you want to fit to the
data that is not normalised. Before you can use it in your
likelihood fit, you must always normalise it

Sz oo

P(CE) — + 00 ( ) + o0 +f f(CC/) dx’
J A [ paar ==

e T 1)

=1
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Normalising your PDF

e This property: T
/ P(z)dzr =1

— OO

is crucial! Often you have a function f(x) you want to fit to the
data that is not normalised. Before you can use it in your
likelihood fit, you must always normalise it

+00
P(CE) T 4o + o0 _f f(CC/) dx’

_{O f(:C’) dx’ /P(ZE/) dy — — :V
S 7 far)
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Likelihood Shape

¢ | should be Gaussian, and L should be a parabola (hear

the maximum) from which you can read off the
uncertainty

Jonas Rademacker

100

999 -

99.8

9.7 -

994

993 |-

992

9.1 |

99

Inl = —

(a —a)’

2
20:

100-(t-1)*+2

0.5

Statistics

+ (meaningless constant)
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Uncertainty from likelihood “Parabolic Error”

¢ You can also calculate the uncertainty directly from

12
Inf = _(a2 g) + (meaningless constant)
O-a
d*(In L) I
d CL2 at a=a B o CZL / \ :

Oq —
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Error Estimate

Jonas Rademacker

100

999 |-

998 |-

99.7 |

996 |-

+ (meaningless constant)

100-(t-1)**2

05

Q>_.|.----------- EEEEEEEEEEEEEEEEEENN

Statistics

Aln L =
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Error Estimate for low N

e |If it’s not a Gaussian, you get asymmetric errors.

Jonas Rademacker

992 |

99

98.8

a

— f } -

T
100-(t-1)%%2 + 0.2%(t-1)%*3

1 1
Al = —
\ l’lﬁ 2

0.5
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Quality of Fit

¢ Very tricky for likelihood fits. The value of the likelihood function does
not tell you anything at all about the quality of the fit.

InL = -276.3 InL =-271.4
QscillatiorHisto GarbageHisio
- Oerliationt 145

£ . Falres 0 £
by Ve 1002 v 12
- s 107G 13
5 |.5h T 5 i+ ’ |

IE Le :_

Csk ‘ c's:
) frmm——— —— —

L2~

e One solution: After doing an un-binned likelihood fit, bin the data and
calculate the x2 between data and fit.
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Quality of Fit

¢ Very tricky for likelihood fits. The value of the likelihood function does
not tell you anything at all about the quality of the fit.

InL =-276.3 InL =-271.4

QOscillationHisto CgabageHisio

O lationt-i=n
Falres

0

e One solution: After doing an un-binned likelihood fit, bin the data and
calculate the x2 between data and fit.
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x2 Fitting and likelihood.

e | et’s do a binned likelihood
fit. Our model predicts f(x1)
events for bin centred at
x1.

>

e The probability to see n;
events given that we
expect f(xi) is given by a
Poisson distribution

P(ni; f(x;)) = e /") S (i)™
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x2 Fitting and likelihood.

¢ Binned likelihood:

o if n; Is large, approximate

1 _l(f(wi)_ni)2
P(’ni;f(%')) = \/ﬂ\/ﬁe 2 VT

* log-likelihood ! |
logL = ZP% ;) :Z 5( N ) e Y\meaningless

T; - constants
—2InL = ZlnP("%,f(%))zZ(f( i) — Z) /
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x2 Fitting and likelihood.

* The x2 fit is equivalent to a binned likelihood fit for large
numbers of events. The interpretation of the x2 in terms
probabilities etc is based on that.

e Conversely, x2 fits only work properly if you have a large
number of events in each bin. Say at least 10.

e What to do if you have fewer than 10 events in a bin:
¢ Merge bins until you have at least 10 events per bin.

e Do a binned likelihood fit (i.e. simply do not approximate the
Poisson with the Gaussian).

e Do an unbinned likelihood fit.
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Testing your fit

Whatever you do, test your fit!
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Pull study

e Simulate a lot of datasets using
Monte-Carlo simulation.

¢ Fit each dataset and calculate the

pull =

(fit result) — (true value)

(error estimate)

and put it in a histogram.

e For a good, unbiased fitter, you

et:
9 Mean
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Monte Carlo Simulations

* To test your fit, you need to try it out on simulated
data.

* To really test it properly, you cannot rely on the
experiment’s detailed simulation - you want to run
thousands of simulated experiments and see if your
fitter behaves as expected. You need a simplified, fast
Monte Carlo for that.

* Today:
* How do generate any distribution

* How to do it a bit more efficiently
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Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A




Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A

0 10

e Define a box from 0 and 10, such that f(x) is always
below the box (i.e. you need to know f(x)’s maximum
in the are of interest).
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Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A

0 10

e Randomly shoot into the box. Accept those events that
are below the red line.
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Von Neumann Accept-Reject

0 10
e X =rnd->Rndm() - 10;

y = rnd->Rndm() - fmax;
if(y < f(x)) acceptEvent(x,y)
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MC-integration

X

0 10

e This can be used for MC integration - the fraction of
points accepted is x to the area under the curve.

o This is the most efficient method of numerical
integration in many dimensions (say more than 3).
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Von Neumann Accept-Reject

0 10

* Can be very inefficient for peaky distributions
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Resources for today’s problem classes:

This course:

https://tinyurl.com/TeshepProblems

https://tinyurl.com/TeshepStatCode

https://tinyurl.com/TeshepMC

External:

http://jupyter.readthedocs.io/en/latest/install.html

nttps://docs.anaconda.com/anaconda/
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The End



Backup
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Worked example

e |n a large medical trial on 10,000 patients, 100 people would be
expected to die without treatment. They find that with
treatment, 80 die.

e |s this significant?
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https://tinyurl.com/TeshepProblems

Calculate significances

¢ Estimate the significance of this 7’ search at CDF
observation:
- §140: + data
* Step 1: calculate the probability  &izo More events seen

than expected —— Standard

Model
prediction

so see an upward fluctuation
this big or bigger in the
Standard Model, in this one bin

Events/(10
2 8.

e Step 2: take into account that

160 180 200 220 240 260 280 300 320 340

they looked in 84 bins (tricky!) M(ee) (GeV/c)

¢ |[n the bin with the arrow, we

. :
You should get a fairly small expect 28 events without the Z’

number. Why, do you think, have
you not read in the news about
the discovery of the Z’ at CDF? * See 48 events.
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Worked example

e |n a large medical trial on 10,000 patients, 100 people would be
expected to die without treatment. They find that with
treatment, 80 die.

e |s this significant?

e Now you learn that the researches have performed performed
50 such trials with different medicines, and only published the
one that looked like a success. Why does this affect the
significance of this result? Calculate how likely it is to have at
least one result with 80 or fewer death

Also, have a look at this: http://tinyurl.com/y837ke92
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Problem 2

¢ 0.01% of the population is infected with a nasty, contagious
Virus

A test for this virus is developed. This test identifies correctly

100% of those carrying the virus. Amongst those that do not
carry the virus, it gives the correct result in 99.8% of the cases.

e |If you test positive, how worried should you be? Are you likely
to be infected?
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Problem 2

¢ 0.01% of the population is infected with a nasty, contagious
Virus

A test for this virus is developed. This test identifies correctly
100% of those carrying the virus. Amongst those that do not
carry the virus, it gives the correct result in 99.8% of the cases.

e |If you test positive, how worried should you be? Are you likely
to be infected?

¢ Task: calculate how likely you are infected if the test is positive
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Probability
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?

e [f you are female, it is only 0.026% (male: 0.069%)

e |f you are a male in Scotland, it is 0.1%
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?
e [f you are female, it is only 0.026% (male: 0.069%)
e |f you are a male in Scotland, it is 0.1%

e But what if you smoke? If you don’t? If you are a heroin-addicted
bomb-disposal expert?
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What is Probability”?

e Mathematically: Defines basic properties suchas 0 <P <1 and

calculation rules; all other definitions must satisfy also this one.
But: No meaning.

¢ Frequentist: How many times ne does something (event E) happen
if | try N times? P(E) = ne/N for N
Problem: What if | can try only once?

e Bayesian: Probability is a measure for the “degree of belief” that
event E happens. One possible definition: I'd bet up to € ne that E
happens, if | get € N if | win: P(E) = (£ ng)/(£ N).

Problem: Subjective (not good for science, but occasionally
unavoidable, e.g. for systematics.)
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Probabilities nomenclatura

* P(A) = probability that A happens

e P(A or B) = probability that A happens, or B happens, or
both.

e P(A & B) = P(A and B) probability that both A and B
happen.

e P(A|B) = “P of A given B”, the probability that A happens
given that B happens.

e Note: while P(A & B) = P(B & A), P(A or B) = P(B or A),
P(A|B) # P(B|A), for example:
P(pregnant | woman) = a few %
P(woman | pregnant) = 100%
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Bayes Theorem

e P(A and B) = P(A) P(B|A) = P(B) P(A|B)

e From this follows Bayes’ theorem:

P(A|B) = P(BJA) P(A)/P(B)

Jonas Rademacker Statistics
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Bayes Theorem

Very important theorem.
Also worth noting: This is not
Bayesian statistics (every
*P(A and B) = P(A) P(B|A) = F  frequentist will happily use
Bayes theorem)

e From this follows Bayes’ theorem:

P(A|B) = P(BJA) P(A)/P(B)
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Problem

¢ 0.01% of the population is infected with a nasty, contagious
Virus

A test for this virus is developed. This test identifies correctly

100% of those carrying the virus. Amongst those that do not
carry the virus, it gives the correct result in 99.8% of the cases.

e |If you test positive, how worried should you be? Are you likely
to be infected?
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Problem

¢ 0.01% of the population is infected with a nasty, contagious
Virus

A test for this virus is developed. This test identifies correctly
100% of those carrying the virus. Amongst those that do not
carry the virus, it gives the correct result in 99.8% of the cases.

e |If you test positive, how worried should you be? Are you likely
to be infected?

¢ Task: calculate how likely you are infected if the test is positive
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Bayes Theorem

e P(A|B) = P(B|A) P(A)/P(B)

e P(person carries virus GIVEN test says person carries virus) =
P(test says person carries virus GIVEN person carries virus

x P(person carries virus)
/  P(test says person carries virus)
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Bayes Theorem

e P(A|B) = P(B|A) P(A)/P(B)

e P(person carries virus GIVEN test says person carries virus) =
P(test says person carries virus-GIVEN-person_carries virus 7

x P(person carries virus)
/  P(test says person carries virus)
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Bayes Theorem

e P(A|B) = P(B|A) P(A)/P(B)

e P(person carries virus GIVEN test says person carries virus) =
P(test says person carries virus-GIVEN-person_carries virus 7

x P(personcarries-virus). O0.0001
/  P(test says person carries virus)
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Bayes Theorem

* P(test says person carries virus)

= P(test says person carries virus & person carries virus)
+ P(test says person carries virus & person does not virus)

= P(person carries virus)
x P(test says person carries virus GIVEN person carries virus)

+ P(person does not carry virus)
x P(test says person carries virus GIVEN person does not virus)

= 0.0001 x 1
+ 0.9999 x 0.002

= 0.0021
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Bayes Theorem

e P(A|B) = P(B|A) P(A)/P(B)

e P(person carries virus GIVEN test says person carries virus) =
P(test says person carries virus GiVEN-person.-carries virus |

x  P(personcarries-~virus) O0.0001
/  P(test says person carries virus)
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Bayes Theorem

e P(A|B) = P(B|A) P(A)/P(B)

e P(person carries virus GIVEN test says person carries virus) =
P(test says person carries virus GiVEN-person.-carries virus |

x  P(personcarries-~virus) O0.0001
/  P(test says person carries virus)

=0.047 = 4.7%
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Bayes Theorem

e P(A|B) = P(B|A) P(A)/P(B)
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Bayes Theorem

e P(A|B) = P(B|A) P(A)/P(B)

e P(person carries virus GIVEN test says person carries virus) =
P(test says person carries virus GiVEN-person.-carries virus |

x  P(personcarries-virus) O0.0001
/  P(testsays-person.carries virus) ().0021

=0.047 = 4.7%

This means >95% of the patients with a positive test are in fact
healthy.
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Bayes Theorem

e P(A|B) = P(B|A) P(A)/P(B)

e P(person carries virus GIVEN test says person carries virus) =
P(test says person carries virus GiVEN-person.-carries virus |

x  P(personcarries-virus) O0.0001
/  P(testsays-person.carries virus) ().0021

=0.047 = 4.7%

This means >95% of the patients with a positive test are in fact

healthy.
" The test is complete rubbish!!
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Pull study

e Simulate a lot of datasets using
Monte-Carlo simulation.

¢ Fit each dataset and calculate the

pull =

(fit result) — (true value)

(error estimate)

and put it in a histogram.

e For a good, unbiased fitter, you

et:
9 Mean
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Monte Carlo Simulations

* To test your fit, you need to try it out on simulated
data.

* To really test it properly, you cannot rely on the
experiment’s detailed simulation - you want to run
thousands of simulated experiments and see if your
fitter behaves as expected. You need a simplified, fast
Monte Carlo for that.

* Today:
* How do generate any distribution

* How to do it a bit more efficiently
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Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A




Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A

0 10

e Define a box from 0 and 10, such that f(x) is always
below the box (i.e. you need to know f(x)’s maximum
in the are of interest).
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Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A

0 10

e Randomly shoot into the box. Accept those events that
are below the red line.
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Von Neumann Accept-Reject

0 10
e X =rnd->Rndm() - 10;

y = rnd->Rndm() - fmax;
if(y < f(x)) acceptEvent(x,y)

Jonas Rademacker (Bristol) Statistics TESHEP 2015 152



MC-integration

X

0 10

e This can be used for MC integration - the fraction of
points accepted is x to the area under the curve.

o This is the most efficient method of numerical
integration in many dimensions (say more than 3).
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Von Neumann Accept-Reject

0 10

* Can be very inefficient for peaky distributions
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Loss-free generation

* Assume you start from a random number generator
that generates a flat distribution between 0 and 1.

e Task: Generate a an exponential without having to
reject any events.

o Trick: Solve this (for x = flat distribution) for t:

Pt) = P(x)%
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Using your MC to test your fit
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Homework https://tinvurl.com/TeshepProblem

The government gets tough on crime.

Because most violent crime takes place within the closest circle of friends and
family, it is decided that anybody above the age of 18 who wants to engage in
any kind of personal relationship must first obtain a permit to do so. The
decision whether a permit is granted is based on a detailed background check.

When the method is tested on a sample of known violent offenders and another
sample of innocent people, it seems to work surprisingly well: 80% of violent
offenders are refused the permit. Only 0.1% of non-violent people are refused
the permit.

Assume that in 2084, 1 in 10,000 of the adult population is (criminally) violent,
and that violent and non-violent people are equally likely to ask for a permit.

What fraction of those who are refused a permit are in fact non-violent?
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Further examples

e A Ring Imaging CHerenkov (RICH) detector differentiates pions
from kaons. It identifies 85% of pions correctly, and 85% of
kaons correctly. At a typical LHC collision, 95% of particles
passing through the detector are pions.

Given the RICH identifies a kaon, what is the probability that it
is a kaon?
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Further examples

¢ A Ring Imaging CHerenkov (RICH) detector differentiates pions from kaons. It
identifies 85% of pions correctly, and 85% of kaons correctly. At a typical
LHC collision, 95% of particles passing through the detector are pions.

Given the RICH identifies a kaon, what is the probability that it is a kaon?

Assume there are only kaons and pions, for simplicity, so we have 5% kaons.

Then the answer is 22% (it’s even less if you take into account other
particles)

So most particles identified as kaons are pions. You need a better detector
(or at least adjust your particle ID cuts for higher kaon purity)
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Medical Study

a)

In a large medical trial on 10,000 patients, 100 people would be expected to die
without treatment. They find that with treatment, 80 die. Is this significant?
To estimate how much evidence for the treatment this constitutes, calculate
the probability to find 80 or fewer events when one expects 100.

Now you learn that the researches have performed performed 50 such trials
with different medicines, and only published the one that looked like a success.
Why does this affect the significance of this result? Calculate how likely it is
to have at least one result with 80 or fewer death

Also, have a look at this:

http://tinyurl.com/y837ke92
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Philosophical Musings
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What are probabilities anyway”?
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Frequentists vs Bayesians
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Frequentists vs Bayesians

* Frequentist probability: P(x) = (Number of times x happens)/N
for N— oo

e Bayesian: “degree of belief that x will happen”, I’'d bet Nx € if |
get N € if x happens. P(x) = Nx/N
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Frequentists vs Bayesians

¢ Applied to fitting: Frequentists maximise the likelihood

L(theory) = H P(datapoint, |theory)

all data points

e This is in fact the probability to see the data, given the theory
P(data|theory) = H P(datapoint,|theory)

all data points

e But wouldn’t we rather want know the probability of the theory
given the data, i.e. P(theory | data)?

e Note once more that this is very different!
P(sits in this room | scientist) = few%
P(scientist | sits in this room) = 100%
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Frequentists vs Bayesians

* Frequentists: P(datal|theory)

e Bayes’ theorem to the rescue:

P(data|th P(th
P(theory|data) = (data|theory) P(theory)

P(data)

e Using variables again (it gets too messy otherwise):

e T = theory = fit parameter (say the mean lifetime of the D
meson)

Pt;|T)P(T
ot = measured data P(7]t;) = (}L(z_)( )
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Bayesian statistics

P(data|theory) P(theory)
P(data)
P(ti|T)P(7)
P(t;)

P(theory|data) =

P(T’tz’)

e What are the terms?
e P(data | theory) = our well-known likelihood
e P(data) = P(t;) = /P(ti‘T)P(T)dT

e P(theory)?
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Bayesian statistics

P(data|theory) P(theory)
P(data)
P(ti|T)P(7)
P(t;)

P(theory|data) =

P(T|t;) «— Bayesians maximise this

e P(theory) is your prior belief of what you expect, i.e. how likely
you think given values of the true mean lifetime are before
looking at the data. P(theory) is called “the prior”, while
P(theory|data) is the posterior probability.
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Bayesian statistics arbitrary prior

P(data|theory |P(theory)
P(theory|data) =
P(data)~—"

P ti TP (T
P(rlt;) = (f|>(t- () Bayesians maximise this

e What prior you choose affects the result you get. There is no
right choice of prior. Flat, 1/,/1, log(t) are all equally sensible. It
also depends on your variable. Flat in 8 is not flat in cos@. What
prior you choose is a matter of opinion.

* The good news is, for large statistics, results get less
dependent on the prior, and tend towards the Frequentist
result.
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Flat? Who's flat”? Flat in x is not flat iny. | lozer sms
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Frequentist vs Bayesian: It matters (for large errors)

CKM fitter (Frequentist) UTFit (Bayesian)

y=66°+12°" y=76°+11°
B=21°+1° B=210+1°

Jonas Rademacker Statistics TESHEP 2018 174



Confidence Levels for Frequentists

¢ Measure the Higgs mass

® There is only one true value - that we can

. attempt to measure many times, with different
“@’@ results due to measurement errors and the
intrinsic width of the Higgs.

—ﬂ ' e Frequentists might one day say: “The Higgs
mass is within 120GeV and 130GeV at
90%CL”".

L% J/ ¢ Frequentists mean: If | keep repeating the

experiment and follow the same prescription
of defining 90% CL limits, the true Higgs mass
will be inside these limits 90% of the time.
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Frequentist vs Bayesian

e Frequentist probability: P(x) = (Number of times x happens)/N for
N—oo

e For frequentists, talking about P(theory), as in P(true mass of Higgs)
does not make sense, because there is only one true mass of the
Higgs - no ensemble, hence no frequentist probability. Instead, talk
about the probability to find the data (repeatable) given the theory.

e Bayesian: “degree of belief that x will happen”, I’'d bet Nx quid if | get
N quid if x happens. P(x) = Nx/N

e Bayesians can quite happily talk about P(true mass of Higgs) and
give a result for the most likely mass of the Higgs, but unfortunately
this result is just an opinion.
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Confidence Levels for Frequentists: Coverage

e Coverage: If | say the true value is within the A and B at a given
confidence value of p (say 90%) | must be right in p (say 90%) of the time,

o |[f | repeat the experiment N times, as N— 0, the true value is inside the
90% confidence limit 0.9*N times, and is outside 0.1*N times.

e Getting it right is called exact coverage
e |f it is outside more often, this is called under-coverage
e |f it is inside more often, this is overcoverage.

e |deally: Achieve exact coverage. Overcoverage better than under-
coverage.
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Confidence Levels for Frequentists: Coverage
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Confidence Levels for Frequentists: 90% Coverage

....rght, right, wrong,
right, right, right, right, right
wrong, right, right, right, right,
right, right, right, right, right,
right, right ...

[E\m [e””min. em,max]
[[emmin, emmax]

[ﬁ:eumin, enmax]: ""y:’?
[emin_[UW@”min. eumax]'
[e*min, e*max]
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Constructing Confidence Limits (Neyman)

e Construct

horizontally, O
Read =
Vertically T
@©

* Achieves f:)
exact 2
coverage. e}
Q.

>

e

measured
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Vertically
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exact
coverage.

vith lambda = 5S.000

Entries

hypothetical value

r forqgmbda =1§0
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Constructing Confidence Limits (Neyman)

e Construct
horizontally,

Read 5

Vertically S

e Achieves f:) = e

exact 8 Z

coverage. o lE——
Q ler 1= -
> e 2 220
= godome 3

1 1
a 1
o 6o r forqgmbda == §O
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Constructing Confidence Limits (Neyman)

<
"
J

Ilambda = 60.000

e Construct 3
horizontally, O 3
Read S |E
Vertically O [ m— = = oo
@ | = T L
e Achieves 21 il
exact Q=
coverage. o lE——Y
Q. ———
>
c

r forqgmbda =1§0

measured
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Constructing Confidence Limits (Neyman)

<
"
J

Ilambda = 60.000

e Construct 3
horizontally, o 3 vernee 1.smanoe
Read S |E
Vertically O [ ee— .

s~/

* Achieves S| Loomns 2
exact Q=
coverage. o lE ), .

o | = R A/ AEEE——— 5
> vl
= e s

1
<40 6o r forqgmbda =1§0

measured
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Constructing Confidence Limits (Neyman)

e Construct
horizontally,

Read
Vertically

o Achieve§<max
exact
coverage.

measured
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Constructing Confidence Limits (Neyman)

e Construct

horizontally, o
Read S
' Q)
Vertically O
3 :
e Achievesmax =& 1
exact 8
coverage. 3
Xmin %

h

Xtrue€ [Xmin, Xmax]
at n% CL

measured
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Constructing Confidence Limits (Neyman)

e Why does
i 2
this work* O
)
qV]
e Assume true =>
value Xo... S
O
-
&
Xo = =177
Q.
~
e

Xtrue€ [Xmin, Xmax]
at n% CL

measured
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Constructing Confidence Limits (Neyman)

e Why does n% of measurements lie in red band.
i ?
this work* O
=
©
* Assume true >
value Xo... S
O
e
o
Kooy

Q.
>
C

Xtrue€ [Xmin, Xmax]
at n% CL

measured
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Constructing Confidence Limits (Neyman)

e Why does n% of measurements lie in red band.
this work? O Fach of them will lead to a confidence
= interval that contains Xo.
©
* Assume true >
value Xo... S
O
)
c
Xo = =

nypo

Xtrue€ [Xmin, Xmax]
at n% CL

measured
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Constructing Confidence Limits (Neyman)

e Why does n% of measurements lie in red band.
this work? O Fach of them will lead to a confidence
% interval that contains Xo.
e Assume true > /
value Xo... I //
O
-
c
R =
O
>
c

Xtrue€ [Xmin, Xmax]
at n% CL
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Constructing Confidence Limits (Neyman)

e Why does Nn% of measurements lie in red band.
this work? O Each of them will lead to a confidence
% interval that contains Xo.
e Assume true > /i
value Xo... < X
O
© .
X = None of the j—né
0 el others contain Xo.
O
>
-

Xtrue€ [Xmin, Xmax]
at N% CL
measured
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Constructing Confidence Limits (Neyman)

e Why does Nn% of measurements lie in red band.
this work? D Fach of them will lead to a confidence
% interval that contains Xo.
e Assume true > e
value Xo... < ¥
O
© 0
AR =t None of the 1-n%
O O others contain Xo.
Q.
>
e

So exactly n% of the time | do
a measurement, | will construct
an interval that contains Xo.

Xtrue€ [Xmin, Xmax]
at N% CL
measured
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Very easy for Gaussians

cal value

hypothet

UtrueE[IJmin, Umax]
at n% CL

Jonas Rademacker ta M@as
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Very easy for Gaussians

=1 Plot MUST be symmetric in pex

cal value

UtrueE[Umin, Umax]

at n% CL measured
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Very easy for Gaussians

pow )2 Plot MUST be symmetric in pex

cal value

UtrueE[Umin, Umax]

at n% CL measured
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Very easy for Gaussians

L iqesey Plot MUST be symmetric in px
V2To 5
Q)
>
©
Lo
Umax B
—
.9
Xmeas =~ Therefore, e.g we do
C achieve 95%

Hmin --...... ; coverage if we take
Utrue€ [Umin, Umax] ' : [Xmeas-20, Xmeas+20]

at n% CL measured
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Problems
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Problems

e Estimated background (say from sideband): 2.5 events
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Problems

e Estimated background (say from sideband): 2.5 events
* Detect 3 events:

e Total < 6.68 at 95% CL

e Signal < 4.18 at 95% CL
* Detect O events

e Total < 2.3 at 95% CL

e Signal < -0.2 at 95% CL

Jonas Rademacker Statistics TESHEP 2018 183



Problems

e Estimated background (say from sideband): 2.5 events

e Detect 3 events:

*Total <6.68at 95% CL  Thjs is allowed since we are

allowed to get it wrong 5% of

the time. However, it’s silly to
make such a statement,

e Total < 2.3 at 95% CL because In this case, we

already know it's wrong,.

e Signal < 4.18 at 95% C

e Detect 0 events

e Signal < -0.2 at 95% CL
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What is Bayesian statistics good for”?
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What is Bayesian statistics good for”?

e Convenient when estimating parameters near a physical
boundary.
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What is Bayesian statistics good for”?

e Convenient when estimating parameters near a physical
boundary.

¢ Detect 3 events:

There are frequentist (and
thus objective) solutions to
this (e.g. Feldman Cousins),

and | highly recommend

them. But let’s see what
* Total < 2.3 at95% CL Bayesians do.

e Signal < -0.2 at 95% CL

e Total < 6.68 at 95% CL

e Signal < 4.18 at 95%

e Detect 0 events
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Bayesian statistics offers a neat solution

P(datal|theory) P(theory)
P(data)

P(theory|data) =

e Pick a prior P(theory) that excludes
values < 0.

e P(theory|data) can be used directly to
construct confidence intervals.

e But beware: there is no unique prior.

Jonas Rademacker Statistics
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Bayesian solution

e Background: 1.7 events

e Total mean: A = 1.7 + Asignal

e Observe 2 events: P(2,A)=0.5*exp(-A\)A2 2 A

e Put in prior taking into account A>1.7

e Multiply, and normalise ‘

e Interpret this as probability for A.

e Many priors possible. Try a few and%e@_'
if you get consistent results. Or use
frequentist methods.
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Summary Frequentist vs Bayesian

e Frequentists need ensembles/repeatable experiments. There is
only one true theory (even if we don’t know it). But data can be
taken many times. Work with P(data | theory).

e Bayesians can make sense of P(theory | data). Can be very
convenient, especially if you have a fit result near a physical
boundary, as it can be easily accommodated in the prior. But it
Is not objective as the prior is not unique.

e For most problems, there are frequentist (i.e. objective)
solutions, e.g. Feldman-Cousins’ approach.

e |f you use Bayesian statistics, try different priors and, as
always, describe exactly what you did.
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Summary
¢ | ooked at a few statistical issues that will become part of your
daily analysis life
e Central Limit Theorem
e Basic fitting methods - whatever you use, test your fit!
* Monte Carlo event generation and MC integration
e Maybe we even looked into evaluating confidence intervals.

e We also had a look at some philosophical aspects of statistics.
What is probability? What are the differences between the
Bayesian and Frequentist approach?
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Homework:

¢ Estimate the significance of this
observation

e Step 1: Calculate the probability so
see an upward fluctuation this big or
bigger in the Standard Model, in this
one bin

e Step 2 take into account that they
looked in 84 bins (tricky!)

¢ You should get a fairly small number.
Why, do you think, have you not read in
the news about the discovery of the Z’
at CDF?

Jonas Rademacker Statistics

ev/c)
)

G
iy
N
o

http://goo.gl/COvCmK

/’ search at CDF

More events seen
than expected

Events/(10
2 8

Y
o
T

N
(=)
T

+ data

— Standard
Model
prediction

160 180 200 220 240 260 280 300 320 3240
M(ee) (Ge\{/c )

¢ |[n the bin with the arrow, we
expect 28 events without the Z’

e See 48 events.
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Integals over Gaussians

I ] | I
n
First steps... e M-
§ = —— / e—%szdsl— / e 2% ds / 1 7%32 1—/ 6_%s_dS
o o NGT J V2r s me ds J Nors
0 0.500 5.0E-01 0.000 1.0E+00
0.1 0.540 4.6E-01 0.080 9.2E-01
0.2 0.579 4.2E-01 0.159 8.4E-01
0.3 0.618 3.8E-01 0.236 7.6E-01
04 0.655 3.4E-01 0.311 6.9E-01
0.5 0.691 3.1E-01 0.383 6.2E-01
0.6 0.726 2.7E-01 0.451 5.5E-01
0.7 0.758 2.4E-01 0.516 4.8E-01
0.8 0.788 2.1E-01 0.576 4.2E-01
0.9 0.816 1.8E-01 0.632 3.7E-01
1 0.841 1.6E-01 0.683 3.2E-01
1.1 0.864 1.4E-01 0.729 2.7E-01
1.2 0.885 1.2E-01 0.770 2.3E-01
1.3 0.903 9.7E-02 0.806 1.9E-01
1.4 0.919 8.1E-02 0.838 1.6E-01
1.5 0.933 6.7E-02 0.866 1.3E-01
1.6 0.945 5.5E-02 0.890 1.1E-01
1.7 0.955 4.5E-02 0.911 8.9E-02
1.8 0.964 3.6E-02 0.928 7.2E-02
1.9 0.971 2.9E-02 0.943 5.7E-02
2 0.977 2.3E-02 0.954 4.6E-02
2.1 0.982 1.8E-02 0.964 3.6E-02
2.2 0.986 1.4E-02 0.972 2.8E-02
2.3 0.9893 1.1E-02 0.9786 2.1E-02
2.4 0.9918 8.2E-03 0.9836 1.6E-02
2.5 0.9938 6.2E-03 0.9876 1.2E-02
2.6 0.9953 4.7E-03 0.9907 9.3E-03
2.7 0.9965 3.5E-03 0.9931 6.9E-03
2.8 0.9974 2.6E-03 0.9949 5.1E-03
2.9 0.9981 1.9E-03 0.9963 3.7E-03
3 0.99865 1.3E-03 0.99730 2.7E-03
3.1 0.99903 9.7E-04 0.99806 1.9E-03
3.2 0.99931 6.9E-04 0.99863 1.4E-03
3.3 0.99952 4.8E-04 0.99903 9.7E-04
\\ 3.4 0.99966 3.4E-04 0.99933 6.7E-04
\ 3.5 0.99977 2.3E-04 0.99953 4.7E-04
\ 3.6 0.999841 1.6E-04 0.999682 3.2E-04
\ 3.7 0.999892 1.1E-04 0.999784 2.2E-04
\ 3.8 0.999928 7.2E-05 0.999855 1.4E-04
/ 3.9 0.999952 4.8E-05 0.999904 9.6E-05
Jonas Rademacker /ULNU 4 0.999968 3.2E-05 0.999937I — ffE. 85 190




Integals over Gaussians

J | 1 |
n
First steps... e M-
§ = —— e—%szdsl— / e 2% ds / 1 7%32 1—/ 5‘%5'(15
o Z NGT J V2r s me ds J Nors
0 0.500 5.0E-01 0.000 1.0E+00
0.1 0.540 4.6E-01 0.080 9.2E-01
L 20/Sq rt(28) = 3_8 0.2 0.579 4.2E-01 0.159 8.4E-01
03 0618 3.8E-01 0.236 7.6E-01
0.4 0.655 3.4E-01 0.311 6.9E-01
05 0.691 3.1E-01 0.383 6.2E-01
0.6 0.726 2.7E-01 0.451 5.5E-01
0.7 0.758 2.4E-01 0516 4.8E-01
0.8 0.788 2.1E-01 0.576 4.2E-01
0.9 0.816 1.8E-01 0.632 3.7E-01
1 0.841 1.6E-01 0.683 3.2E-01
1.1 0.864 1.4E-01 0.729 2.7E-01
1.2 0.885 1.2E-01 0.770 2.3E-01
1.3 0.903 9.7E-02 0.806 1.9E-01
14 0.919 8.1E-02 0.838 1.6E-01
1.5 0.933 6.7E-02 0.866 1.3E-01
1.6 0.945 5.5E-02 0.890 1.1E-01
1.7 0.955 4.5E-02 0.911 8.9E-02
1.8 0.964 3.6E-02 0.928 7.2E-02
1.9 0.971 2.9E-02 0.943 5.7E-02
2 0.977 2.3E-02 0.954 4.6E-02
2.1 0.982 1.8E-02 0.964 3.6E-02
2.2 0.986 1.4E-02 0.972 2.8E-02
23 0.9893 1.1E-02 0.9786 2.1E-02
2.4 0.9918 8.2E-03 0.9836 1.6E-02
25 0.9938 6.2E-03 0.9876 1.2E-02
2.6 0.9953 4.7E-03 0.9907 9.3E-03
2.7 0.9965 3.5E-03 0.9931 6.9E-03
2.8 0.9974 2.6E-03 0.9949 5.1E-03
2.9 0.9981 1.9E-03 0.9963 3.7E-03
3 0.99865 1.3E-03 0.99730 2.7E-03
3.1 0.99903 9.7E-04 0.99806 1.9E-03
3.2 0.99931 6.9E-04 0.99863 1.4E-03
33 0.99952 4.8E-04 0.99903 9.7E-04
N\ 3.4 0.99966 3.4E-04 0.99933 6.7E-04
N\, 35 0.99977 2.3E-04 0.99953 4.7E-04
N\, 3.6 0.999841 1.6E-04 0.999682 3.2E-04
\ 3.7 0.999892 1.1E-04 0.999784 2.2E-04
N 38 0.999928 7.2E-05 0.999855 1.4E-04
/ 39 0.999952 4.8E-05 0.999904 9.6E-05
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First steps...

e 20/sqrt(28) = 3.8
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i I | I
x - /’l/ F 1 P r 1 1 y 1 P 1.2
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1.2 0.885 1.2E-01 0.770 2.3E-01
1.3 0.903 9.7E-02 0.806 1.9E-01
1.4 0.919 8.1E-02 0.838 1.6E-01
1.5 0.933 6.7E-02 0.866 1.3E-01
[.2E-0
]
2.4 0.9918 8.2E-03 0.9836 1.6E-02|
25 0.9938 6.2E-03 0.9876 1.2E-02/
2.6 0.9953 4.7E-03 0.9907 9.3EA03|
I\ 2.7 0.9965 3.5E-03 0.9931 6/9E-03
2.8 0.9974 2.6E-03 0.9949 5.1E-03
2.9 0.9981 1.9E-03 0.9963 3.7E-03
3 0.99865 1.3E-03 0.99730 2.7E-03
3.1 0.99903 9.7E-04 0.99806 1.9E-03
32 0.99931 6.9E-04 0.99865 1.4E-03
3.3 0.99952 4.8E-04 0.99903 9.7E-04
\\ 3.4 0.99966 3.4E-04 5799933 6.7E-04
\ 35 0.99977 2.3E-04 0.99953 4.7E-04
\ 3.6 (2999841 1.6E-04 0.999682 3.2E-04
\ 3.7 0.992892 snas 0.999784 2.2E-04
\ 3.8 0.99992R 7.2E-05 0.999855 1.4E-04
/ 3.9 0.999952 4.8E-05 0.999904 9.6E-05
/ 4 0.999968 3.2E-05 0.999937 6.3E-05



First steps...

e 20/sqrt(28) = 3.8
e p=7.210-°
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Integals over Gaussians

r — | s i
1 12 / 1 1 1 1.2 / 1 1
M 5% 7.1 — 2™ 2% d -3 1-— 2%
S = / s=¢* ds Vo ’ /\/%e =% ds Vo ’

First steps...

(o) —oo s
—S
0 0.500 5.0E-01 0.000 1.0E+00
0.1 0.540 4.6E-01 0.080 9.2E-01
L 20/Sqrt(28) = 3_8 0.2 0.579 4.2E-01 0.159 8.4E-01
0.3 0.618 3.8E-01 0.236 7.6E-01
0.4 0.655 3.4E-01 0.311 6.9E-01
— n —5 0.5 0.691 3.1E-01 0.383 6.2E-01
* p - 7'2 10 0.6 0.726 2.7E-01 0.451 5.5E-01
0.7 0.758 2.4E-01 0.516 4.8E-01
0.8 0.788 2.1E-01 0.576 4.2E-01
0.9 0.816 1.8E-01 0.632 3.7E-01
. . . 1 0.841 1.6E-01 0.683 3.2E-01
[ ) d - 1.1 0.864 1.4E-01 0.729 2.7E-01
this is called the p-value, it the 1 0804 14E01 0729 27601
H H 1.3 0.903 9.7E-02 0.806 1.9E-01
probability to see such a
. . y . 1.5 0.933 6.7E-02 0.866 1.3E-01
fluctuation in the SM (no Z’). It is; = - e
13 H ”»
very small (a “3.8 sigma effect”).
7.2E-05
|
2.4 0.9918 8.2E-03 0.9836 1.6E-02|
2.5 0.9938 6.2E-03 0.9876 1 .2E-0?J
2.6 0.9953 4.7E-03 0.9907 9.3EA03|
I\ 2.7 0.9965 3.5E-03 0.9931 6/9E-03
2.8 0.9974 2.6E-03 0.9949 5.1E-03
2.9 0.9981 1.9E-03 0.9963 3.7E-03
3 0.99865 1.3E-03 0.99730 2.7E-03
3.1 0.99903 9.7E-04 0.99806 1.9E-03
3R 0.99931 6.9E-04 0.99865 1.4E-03
3.3 0.99952 4.8E-04 0.999203 9.7E-04
\ 3.4 0.99966 3.4E-04 .99933 6.7E-04
\ 3.5 0.99977 2.3E-04 0.99953 4.7E-04
\ 3.6 (»999841 1.6E-04 0.999682 3.2E-04
\ 3.7 0.998892 snas 0.999784 2.2E-04
\ 3.8 0.999928 7.2E-05 0.999855 1.4E-04
/ 3.9 0.999952 4.8E-05 0.999904 9.6E-05
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Integals over Gaussians

First steps...

e 20/sqrt(28) = 3.8
e p=7.210-°

¢ this is called the p-value, it the
probability to see such a
fluctuation in the SM (no Z’). It is;

very small (a “3.8 sigma effect”).

e But, we looked at many bins. If
want to calculate how likely | am
to make a wrong discovery, | need
to know how likely am to get such
an unlikely event (i.e. event with
this p value) at in at least one bin.
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0.4 0.655 3.4E-01 0.311 6.9E-01
0.5 0.691 3.1E-01 0.383 6.2E-01
0.6 0.726 2.7E-01 0.451 5.5E-01
0.7 0.758 2.4E-01 0.516 4.8E-01
0.8 0.788 2.1E-01 0.576 4.2E-01
0.9 0.816 1.8E-01 0.632 3.7E-01
1 0.841 1.6E-01 0.683 3.2E-01
1.1 0.864 1.4E-01 0.729 2.7E-01
1.2 0.885 1.2E-01 0.770 2.3E-01
1.3 0.903 9.7E-02 0.806 1.9E-01
1.4 0.919 8.1E-02 0.838 1.6E-01
1.5 0.933 6.7E-02 0.866 1.3E-01
7.2E-05
|
2.4 0.9918 8.2E-03 0.9836 1.6E-02|
2.5 0.9938 6.2E-03 0.9876 1 .2E-0?J
2.6 0.9953 4.7E-03 0.9907 9.3EA03|
I\ 2.7 0.9965 3.5E-03 0.9931 6/9E-03
2.8 0.9974 2.6E-03 0.9949 5.1E-03
2.9 0.9981 1.9E-03 0.9963 3.7E-03
3 0.99865 1.3E-03 0.99730 2.7E-03
3.1 0.99903 9.7E-04 0.99806 1.9E-03
3R 0.99931 6.9E-04 0.99865 1.4E-03
3.3 0.99952 4.8E-04 0.98903 9.7E-04
N\ 3.4 0.99966 3.4E-04 5799933 6.7E-04
\ 3.5 0.99977 2.3E-04 0.99953 4.7E-04
\ 3.6 (»999841 1.6E-04 0.999682 3.2E-04
\ 3.7 0.998892 snas 0.999784 2.2E-04
\ 3.8 0.999928 7.2E-05 0.999855 1.4E-04
/ 3.9 0.999952 4.8E-05 0.999904 9.6E-05
/ 4 0.999968 3.2E-05 0.999937 6.3E-05
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PDFs: important properties
b

e Probabilities by integrating PDFs P(z € [a,b]) = /P(flf') d’
+00 a
e Normalisation - P(something happens) = 1: / P(z)dx' =1

e Expectation value of x, or any function of x, gives the average
expected outcome for x (function of x)

@ = [eP@)ar (@)= [ 1a)Pa) i

e Variance V = (x2) — (x)?

e Change of variables:  P(y) = P(x)

Jonas Rademacker Statistics TESHEP 2018

191



Alternative Definitions of V and o

®* There are other definitions of V and o on the market.
One frequently encountered is this:

N
1 N
V B — - L) V
N - Zzl (T —x;) = NN —
* And correspondingly oN m — ON\/
N —1

* This has a slightly different value, and it has a subtly
different meaning. Importantly, though, both definitions
tend to the same value as N increases.

e |[n this course, the symbols V, o stand for Vn, On.
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Subtleties of on, ON-1

hm ON/
N’'—o0
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Subtleties of on, ON-1

¢ As with many things of little importance, people can get very
passionate about them.

lim ON'/
N’'— o0
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Subtleties of on, ON-1

¢ As with many things of little importance, people can get very
passionate about them.

e on represents the spread of the distribution as we measure it.

lim ON'/
N’'— o0
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Subtleties of on, ON-1

¢ As with many things of little importance, people can get very
passionate about them.

e on represents the spread of the distribution as we measure it.

e What’s behind on-1 is the concept that our measurements are
drawn from a much larger (infinitely large), theoretical parent
distribution. on-1 provides an unbiased estimate of the
standard deviation of Gtheor-parent. SO the point of on-1 is to
estimate Otheor-parent = th ON’ l.e. to estimate what on would
be had we got much more data.
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Subtleties of on, ON-1

¢ As with many things of little importance, people can get very
passionate about them.

e on represents the spread of the distribution as we measure it.

e What’s behind on-1 is the concept that our measurements are
drawn from a much larger (infinitely large), theoretical parent
distribution. on-1 provides an unbiased estimate of the
standard deviation of Gtheor-parent. SO the point of on-1 is to
estimate Otheor-parent = th ON’ l.e. to estimate what on would
be had we got much more data.

¢ SO0 now we have 3 sigmas: ON, ON-1, Otheor-parent-
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|”

|dea of “idea

parent sample

gauss

200
1801
160
140
120F
100

- O

gauss
6F — Entries 10 3F — Entries 10
E Mean 0.784 25 Z_ Mean -0.07611
5 E RMS 0.7639 ’ C RMS 1.233
4 :_ Underflow 0 2 :_ Underflow 0
E Overflow (1] r Overflow 0
= 1.5
2F 1 L
1 0.5
0 E T B R T T B T 0 y PRI T NN SR T N [N TR TN SN NN TN TN U S VU R N S
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

<

Ideal parent
sample, in [imit of
Infinite statistics
(practically
inaccessible)

Possible measured samples randomly drawn from parent
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4 — — Entries 10
35 F Mean -0.1871
“E RMS 12
3 E_ Underflow 0
2.5 ;— Overflow 0
2
1.5F
1E —
0.55
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0g -4 2 0 2 4 6
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Subtleties of on, ON-1

* There are a few problems with Otheor-parent:

e As we’ll see later, not for all theoretical distributions is Gtheor-parent defined (can
be infinite), in which case there’s not much point in estimating it - but on is
defined for all measured distributions with a finite number of data points.

¢ An unbiased estimate is nice, however, being unbiased is only one of the
many qualities of an estimate - efficiency (i.e. gets close to the truth fast) is
another. on is the most efficient estimator of Gtheor-parent, While on—1 is unbiased.

®On-1 gives larger values, i.e. is more conservative, and therefore liked by many
cautious scientists.

e Here we’ll take the view that data are the data and they have a well-defined sigma
(on), and that’s that. Estimating the parameters of theoretical parent distributions
from this is something different, that we will also look into, but separately and later.
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Subtleties of on, ON-1

e Don’t loose any sleep over it. But it will come up again and
again - now you know what it means.

¢ You got a first glimpse on important topics such as parameter
estimation and parent sample.

¢ |[n this course, the variance and standard deviation of a sample
are, respectively, V=Vn, c=0n

e The important thing is that people know what convention you
use and you stick to it.

¢ Even more importantly, remember on = on-1 as N gets large.
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Moments

e The kth moment of a sample is just the average of the kth
power of each data value:

N
mk,:—g rh = gk
N 4 " ‘

—

e The kth central moment is

1 Nk _\k
ckENZ(xi—az) = (r — 7)

e So the mean is thel1st moment of the sample, the variance is
the 2nd central moment.

e Higher moments play a marginal role in data analysis (with few
exceptions), we won’t consider them, here.

Jonas Rademacker Statistics TESHEP 2018 197



Lecture 2
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EVENTS /25 MeV

Describing
Data Probability and probability
distributions, Probability
density functions
Central Limit Theorem
Discoveries
Confidence Levels
Hypothesis testing

Fitting Monte Carlo simulation
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Loss-free generation

o Trick: Solve this (for x = flat distribution) for t:

d 1
Pt) = P(x)d—f, with P(z) =1, P(t)= —e "t/
-
dx 1 _t)r
dt 7‘6
r = —e YT4C
—7In(C—2) = t

* Integration constant C=1 determined by requirement
to map x€[0,1] to t€[0,0].

t=—7In(1 —x)

e This simple parameter transformation will change
your flat distribution in x to an exponential. Neat.
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Efficient generation

* In reality, it is often not possible to find the correct
parameter transformation - first of all you need to find
an integral (not always easy), and then you have to
invert the result (not always easy).

*  What often works, though, is to generate something
similar to the real distribution and then apply accept-
reject on the ratio:

r = full_pdf(x)/pdf_used_for_efficient_generation(x);

if(y < r )acceptEvent(x,y)
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Mixed approach

0 10

 First generate something similar to the true
distribution and then use accept reject on that...
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A —:CC at 3.5 GeV?

SELEX 2002
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Discovery of Top at the Tevatron, Fermilab, in 1995

ANKIND has sought the elementary building blocks of T M Di ibuti
Mmatter ever since the days of the Greek philosophers. Over op ass Distribution
time, the quest has been successively refined from the g I
original notion of indivisible “atoms” as the fundamental elements
to the present idea that objects called quarks lie at the heart of all
matter. So the recent news from Fermilab that the sixth—and

possibly the last—of these quarks has finally been found may signal
the end of one of our longest searches.

Events/(20 GeV/c?)

100 200
Fitted Mass (GeV/c?)

5 T T T T
L CDF |
NU
3
O 3 .
=
<
S 2 _
S
(0]

i
1 1. — —
| N

0
80 120 160 200 240 280
Reconstructed Mass (GeV/c?)

Jonas Rademacker Statistics TESHEP 2018 204



Discovery of the Top at CERN

CERN comes out again on to
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Discovery of the Top at CERN
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“Discovery” of the Top at CERN
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True and False

Top Mass Distribution
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A Zc a few days ago
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Discovery of the Top at CERN

CERN comes out again on to
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Discovery of the Top at CERN
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“Discovery” of the Top at CERN
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Discovery of Top at the Tevatron, Fermilab, in 1995

ANKIND has sought the elementary building blocks of T M Di ibuti
Mmatter ever since the days of the Greek philosophers. Over op ass Distribution
time, the quest has been successively refined from the g I
original notion of indivisible “atoms” as the fundamental elements
to the present idea that objects called quarks lie at the heart of all
matter. So the recent news from Fermilab that the sixth—and

possibly the last—of these quarks has finally been found may signal
the end of one of our longest searches.
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Problems & examples

To run the jupyter notebooks, you need to install some
software. Follow the instructions here:

http://jupyter.readthedocs.io/en/latest/install.html

(note: there is an option to install the notebooks with
python 2 or 3 - my notebooks use python 3.

| recommend the “anaconda route”. To install anaconda:

https://docs.anaconda.com/anaconda/
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