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Two and a half lectures

● “Basics”
● The Planck mission and its results.
● Acceleration of expansion, with practical work

Textbooks :
-  James Rich : “Fundamentals of Cosmology”
-  John Peacock : “Cosmological physics”
-  Scott Dodelson : “Modern Cosmology”
-
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What is cosmology ?

●A branch of physics. 
●That studies the universe as a whole:
   - History
   - Content, geometry (topology)
   - Formation of structures
   - Characteristic scales
   - ....

● experimental observational science 
 Messenger are (mostly) photons:
   - X
   - UV, visible, IR
   - deep IR , millimetric
   - radio, …

And gravitational wave astronomy is
    becoming real

Only one universe: 
one cannot replay 
under varying 
experimental conditions



Cosmo-TesHep  07/18
4

Gravitation

On large scales, all other interactions vanish:
      - Electro-magnetism : no forces, only waves
      - Weak and strong forces have very short ranges
      - However all interactions are at play in stars, galaxies, ….

Equivalence principle :
          Gravitation couples to inertial mass
         Gravitational and inertial forces are undistinguishable
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Gravitation

On large scales, all other interactions vanish:
      - Electro-magnetism : no forces, only waves
      - Weak and strong forces have very short ranges
      - However all interactions are at play in stars, galaxies, ….

Equivalence principle :
          Gravitation couples to inertial mass
         Gravitational and inertial forces are undistinguishable

By the way, we have absolutely no understanding
  of the universality of free fall, which is probably
  the best established physical law, up to solar system scales.  
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Metric theory of gravitation

Trajectories in space-time only depend on initial 
      conditions, not mass.

      → one can encode gravitational forces into space-time geometry.
          Trajectories follow “shortest paths” i.e. geodesics. 

 

   → there are no special coordinate systems.  All are equivalent. 

Metric tensorDistance element
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Einstein equations
Function of g

Energy-momentum tensor

- This is General Relativity !
- Other metric theories are possible.
- Relates geometry (→ trajectories) to sources.
- 10 equations in general (4x4 symmetric) 
- Covariant under general change of coordinates
- Non linear 
- Radiation propagation is possible (and observed) Invariant

Under a 
Coordinate
Mapping change

Cosmological constant
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Cosmological principle

The universe is homogeneous and isotropic
  - no special position (Copernic) or direction
  - … but no time invariance 
  - .. and spatial curvature is not defined
-> Friedman-Lemaitre-Robertson-Walker metric:

Scale factor Comoving coordinate

k = -1,0,1 (curvature sign)
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Redshift z 

Ly  : 1216 Ang. In the lab
    z = 7400/1216 - 1 =~ 5.0

Shift to the  red: 
  - a(t) increases with t
  - expansion !
And also: time dilation  ...

SDSS

Redshift allows us to measure 
   scale factors !  Some 

spectrum 

Assumes that emitter and
receiver are both comoving
(i.e.  “attached” to matter)
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Friedman equation(s)

In principle sufficient, once specified  how density () depends on a(t).
Alternatively : 

A negative pressure can accelerate expansion.

FLRW metricGR: Einstein Equations
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(

Historical
& Newtonian
parenthesis
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Our cosmological model :
founding stones

1915 : Albert Einstein  proposes General Relativity
1922 : Alexander Friedman proposes evolving universe models
1927 : Georges Lemaître proposes evidence for expansion  
1929 : Edwin Hubble : “the faster, the fainter”

velocity

Distance (from flux)

Recession velocity
of nebulae
vs “distance”
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Expansion

  D    D  

VV VV

Us
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Expansion

  D    D  

VV VV

  D  
  2D  

VV 2V2V

Them

 Let us change our view point    

Us

Us
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Expansion

Cosmological principle:

No favoured direction nor location

Velocity and  distance are proportional 

(to first order)

No expansion would be a particular case
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Expansion : deceleration ?

  D    D  

VV VV

« universal attraction » 
  Galaxies attract each other: 
 relative velocities slow down
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So

velocity

Distance (from flux)

● V = H d     is a  signature of the expansion of the universe
● The deceleration of expansion with time (or distance) 
   encodes  matter (or more generally energy)  density.

Two hypotheses 
for matter density
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)

Historical
& Newtonian
parenthesis
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The fate of expansion ? It depends ...

“initial”
 conditions
       =       
present 

Conditions

M  +    = 1 ­ k 
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Densities in cosmology

Density means “energy density” (i.e. mass + kinetic energy)

Critical density: the one which makes the universe flat, i.e. k=0. 

Dimensionless density  (today):

“Physical” density:

Common convention : 
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The “equation of state”

To integrate this, you have to specify how  depends on a, or t .

Equation of state:

Definition of pressure

w constant 
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Differential equations for expansion

Friedman equation

Acceleration equation

Energy conservation equation

Exercise : show that these 3 equations are redundant
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Set    k=0 (flat universe),   =0 (could be integrated into )
   scales as a-3(1+w)  .   w (assumed constant) is called “equation of state”

Radiation 

w=1/3

a-4  

a t1/2

Matter 

w=0

a-3  

a t2/3

 

w=-1

Cst  

a exp (t/1/2)

Simple
solutions
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If the universe expands there could an 
“initial singularity”

Pointed out by Lemaître (1927)
 
This is true for almost any “reasonable” content today. 

This initial singularity is commonly called the Big Bang.

It violates time invariance: global energy conservation 
      is not realized.
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The Big Bang 
sketch

Structures form
   all the way
 

Atoms form

Light nuclei form
Positrons disappear
….

You are here

3 mn

400 000 y

Few s
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Qualitative cosmology

As time goes:

● Temperature decreases

● Density decreases

● Lighter and lighter particles “freeze out” (cst comoving density)

● Bound states form (with smaller and smaller binding energies)

● Contrast to homogeneity increases 

This is why high-energy accelerators are related  to Big Bang
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A brief history of the universe

Log(scale factor  a)
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matter

dark energy

now

radiation

1

equality

(Re)-combination   (H and He atoms form)

Nucleosynthesis
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How long since Big Bang ?
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Observational evidence 
of the hot Big Bang scenario

●The Cosmological Microwave Background.

●The cosmological abundance of light elements. 

● The evolution of large scale structures.

● The age of oldest stars.
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Before recombination

The CMB emission
(cosmic microwave background)

After recombination

“Recombination” should be just called “combination”
… but is always called recombination. 

CMB is a fossil remain of the hot big bang.
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When did it happen

Order 0:   when  energy of photons ~ 13.6 eV (H binding energy)

Order 1 : when there were as many photons >13.6 eV than 
                 electrons and protons

Order 1.5 : replace 13.6 by 3/4*13.6 (n=1 → n=2). Find 5000 K

Beyond : involved atomic physics and numerical codes. Find 3000 K
                 → emitted  ~ 380,000 years after BB
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CMB detection
(and identification)
already 53 years !

(Penzias & Wilson, Bell Labs, 1965)
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CMB spectrum: it has to be thermal...
...and it is thermal

            
(Prof. Dr. Karl - Heinz Kampert, Uni Wuppertal)

T = 2.726 +/- 0.005  (sys dominated)
         the most precise cosmological measurement still
         → also delivers photon density : 413 cm-3  today

Matther et al (1990)

COBE
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CMB 
anisotropies

Dipole due to 
our peculiar velocity

Milky Way emission

(COBE DMR, Smoot et al, 1992)
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Observational evidence
of the Big Bang scenario 

● The Cosmological Microwave Background.

● The cosmological abundance of light elements.

● The evolution of large scale structures.
              We'll come to that soon

● The age of oldest stars:
       The age of stars can be evaluated using stellar evolution models
        The oldest observed stars are ~13 Gyr old. 
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Big Bang Nucleosynthesis

Nucleosynthesis i.e. forming light nuclei
       -starts at T ~  MeV  (t~100 s)
       - stops when density gets too low
                 (or run out of neutrons)

T=1.5 MeV 150 keV

E. Vangioni (IAP)

              Historical paper:
Alpher, Bethe &  Gamow (1948)
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Nucleosynthesis (2)
Main drivers :
     N

baryons
/N

photons
 

     Expansion rate (depends on the 
          number of neutrino flavours)

Measurements of abundances :
      Helium fraction is 0.24 (safe)
      D/H is hard to measure (settled now).
      Li is destroyed in stars.

Bottom line: 
  -   6 10-10 explains measured 
            abundances 

  -   Photon density is known
          → yields baryon density

E. Vangioni (IAP)
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Nucleosynthesis (2)
Main drivers :
     N

baryons
/N

photons
 

     Expansion rate (depends on the 
          number of neutrino flavours)

Measurements of abundances :
      Helium fraction is 0.24 (safe)
      D/H is hard to measure (settled now).
      Li is destroyed in stars.

Bottom line: 
  -   6 10-10 explains measured 
            abundances 

  -   Photon density is known
          → yields baryon density

E. Vangioni (IAP)
We basically do 
not understand
this number 
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Nucleosynthesis (3)

Helium

Deuterium

0809.0631


b
 ~= 0.045 

Much lower than 
m
  

CMB
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Observational evidence
of the Big Bang scenario 

● The Cosmological Microwave Background.

● The cosmological abundance of light elements.

● The evolution of large scale structures.
              We'll briefly discuss that 

● The age of oldest stars:
       The age of stars can be evaluated using stellar evolution models
        The oldest observed stars are ~13 Gyr old. 
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So, there was a hot Big Bang
about 13 Gyr ago 

Or, …. everything looks like there was one ….

Two relics are well explained by a hot Big Bang:
      - Light nuclei  (~3 mn)
      - CMB (~ 400 000 yr), thermal and isotropic.

Experimental Observational Program :  
       - figure out the (average) content
       - understand the formation of structures.
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Formation of structures
Practical question: how are these 2 picture related (quantitatively)

Formation of structures is the result of
competition between attraction by gravity 
and pressure and expansion. 
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Homogeneity : Friedman equation(s)

FLRW metric

a(t) : scale factor. By convention a(now) = 1.
  is the (energy) density. One could integrate in it. 
k = -1,0,1 is the sign of curvature

This is General Relativity for an homogeneous and isotropic universe

GR: Einstein Equations
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Beyond homogeneity : Perturbations

Perturbations describe fluctuations beyond the homogeneity:
 - density perturbations
 - metric perturbations (expressed with gravitational potentials)
 - coupling between the two (Einstein equation) 

We know from CMB observations that early perturbations are small

→ First order perturbations will capture the physics 
        (before recombination)
→ Linear differential equations. Spatial coordinates are
       often handled in Fourier space.
→ Independent Fourier modes.
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Density perturbations

Definition: 

● Physics at play:
– Gravitation (positive perturbations tend to grow)

– Expansion (!)

– Pressure (from photons on charged particles)

– Sound waves in the primordial plasma

– Transport (by photons and neutrinos)

– length limits imposed by causality

– ….
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Density perturbations

● In almost all conditions, density perturbations do 
grow :  grows, as density decays.

● So the history of the universe is not only a 
decrease of average density, it is also an increase 
of constrast

T/T ~ 10-5, z~1100  ~ 1, z~1
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Relics of early perturbations:
sound horizon 

● Sound waves in the early plasma (before 
recombination) 

– The dominant contribution to the CMB 
anisotropies on small scales (< ~2 degrees).

– Leaves forever a preferred length in the matter 
density fluctuations

Sound waves propagate in the 
primordial plasma until 
recombination where the pattern
just freezes.

Sound horizon: distance 
travelled by sound waves
Until recombination
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Relics of early perturbations:
the horizon at equality

● Perturbations can be washed out by radiation...
● ...only if they are smaller than the horizon
● … and if the expansion is driven by radiation.
● Two limiting regimes:

– Radiation dominated (early) vs matter-dominated 
(later) expansion

– Smaller or larger than the (evolving) horizon.
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Relics of early perturbations:
the horizon at equality

Power spectrum
of matter:
(k)  = FT((r))
P(k) = |(k)|2

Comoving wave number

(comoving) horizon size at equality

Equality:
when matter and radiation
densities are equal
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Why measuring that is important ?

● This horizon size is a function of matter and 
radiation density. 

● Do we know the radiation density ?
● How well ?
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Why measuring that is important ?

● This horizon size is a function of matter and 
radiation density. 

● Do we know the radiation density ?
● How well ?  From CMB temperature !

● So if we know 
m
/

rad
, we deduce  

m
.
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Matters correlations nowadays
Model vs observations

Prediction
for  

M
 = 1

Observations (by 1994!)

Figure from “Modern Cosmology”  (Dodelson, Academic Press)

Correlations of galaxies
from Peacock & Dodds (1994)


M

 = 0.3

Comoving 
horizon
at equality

Power spectrum
   of matter
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Matters correlations in the nearby 
universe : model vs observations

Angular correlation
function of galaxies

(Efstathiou et al, 1990)


M

 = 1


M

 = 0.2

Scales are too
small for simple
predictions
to be reliable

The correlations of galaxies have challenged 
M

 = 1 for more than 20 years !
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One dark matter indication 

Baryonic matter has density 
b
 ~0.05  

     primordial nucleosynthesis, Helium fraction.....

Matter has density 
M

 ~ 0.3   
     from matter density perturbation correlations

Some most matter is non-baryonic
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Summary

● There is ample evidence in favour of the hot big 
bang scenario.

● Big Bang Nucleosynthesis  indicates that the 
baryon density is ~ 5% of the critical density

● There are two physical lengths which are relics 
from the growth of early perturbations

– The sound horizon at recombination

– The (event) horizon at matter-radiation equality

● The matter density is ~ 0.3 of the critical density.
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More slides
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Correlation function 
and power spectrum

Power spectrum

Correlation functionwiggles

peak

A single peak in the correlation function 
→ harmonic peaks in the power spectrum
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Measurements using
Galaxies as “tracers” of
the matter field

BOSS galaxy
Redshift survey

1312.4877

Successive data releases
(DR) correspond to 
Increasing amounts of 
data.
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Initial power spectrum

No natural scale → has to be a power law

n=1 is called Harrison-Zeldovitch-Peebles spectrum.
(“scale invariant” because k3P(k) (dimensionless)

 does not depend of k)

→ We expect n=~1. It turns out that we measure n ~0.96
We are fairly sure we understand the small difference.

Definition of P(k) 
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Evolution of perturbations

Computations to first order. Few results to second order.
Complex subject: typically more than 50 pages in cosmology textbooks.

Only a qualitative discussion here...

Simple example: evolution of matter perturbations in a matter dominated 
            universe without radiation:

The evolution of a perturbation is (in this case) independent of its size
Two solutions: one decaying (uninteresting), one growing
This is what happens after recombination.  
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Various perturbation growth regimes

Two limiting regimes:

● Causal vs not causal (wavelengths larger or smaller than the horizon)
       On small scales, pressure effects tend to oppose gravitational collapse.
 
● Radiation dominated vs matter dominated

So, the horizon size at matter-radiation equality 
is imprinted on the matter fluctuations.
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Horizon size at matter-radiation 
equality

Comoving horizon size : 

Radiation dominated era: 

Known from
T

CMB

“The matter density is imprinted on the sky”
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Interlude: measuring the
matter correlation function from 

galaxies 
“Correlation function” has nothing to do with “correlation coefficient”. 

Do it yourself (!):
1) Find a (large) telescope and measure the positions (2 angles) and
  redshifts of, say 50,000  galaxies (!)

2) Compute the distances between 
all galaxy pairs and plot a histogram 
of it ( & account for acceptance)

Eisenstein et al 05

Warning:
statistically 
correlated 
error bars
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