

Instrumentation for high energy physics Sergey Barsuk, LAL Orsay, <u>sergey.barsuk@lal.in2p3.fr</u>

- Passage of particles through matter
- Photon detectors
- **Scintillators**
- Cherenkov light detectors, time-of-flight detectors
- **Calorimeters**

CALERAGE

Tracking detectors: silicon and gaseous detectors, introduction

Very selective and personal, no way to cover all technologies/detectors Many simplifications, avoid formalism where possible No proper references to the origin for many plots

TESHEP, Poltava - Ukraine, 13-20/07/2018

- □ Particle detectors, C. Grupen, Cambridge University
- □ Radiation detection and measurement, G. Knoll, John Wileys & sons
- Techniques for nuclear and particles physics experiments, W. Leo, Springer
- Experimental techniques in high energy physics, T. Ferbel, World Scientific
- Particle Data Book
- Excellent presentation of C. Joram at CERN summer student in 2002
- Dan Green, The Physics of Particle Detectors
- □ Fabio Sauli, Principles of Operation of Multiwire Proportional and Drift

Chambers

- □ Richard Wigmans, Calorimetry
- Presentations/proceedings from many detector conferences

Some units and conventions

Wanted: particle ID (mass, charge) and particle kinematics (momentum, energy)

. .

$$E^{2} = \vec{p}^{2}c^{2} + m_{0}^{2}c^{4}$$
energy E : measured in eV
momentum p : measured in eV/c or eV
mass m_{0} : measured in eV/c^{2} or eV
 $p = \frac{V}{c}$ $(0 \le \beta < 1)$ $\gamma = \frac{1}{\sqrt{1 - \beta^{2}}}$ $(1 \le \gamma < \infty)$
 $E = m_{0}\gamma c^{2}$ $p = m_{0}\gamma\beta c$ $\beta = \frac{pc}{E}$
1 eV is a small energy.
1 eV = 1.6 \cdot 10^{-19} J
 $m_{bee} = 1g = 5.8 \cdot 10^{32} eV$
 $v_{bee} = 1 m/s => E_{bee} = 10^{-3} J = 6.25 \cdot 10^{15} eV$
 $E_{LHC} = 14 \cdot 10^{12} eV$
However,
LHC has a total stored beam energy
 10^{14} protons x $14 \cdot 10^{12} eV \sim 10^{8} J$
or, if you like,
one 100 T truck
at 100 km/h

from C. Joram, SSL 2003

Some units and conventions

<u>Cross section</u> σ or the differential cross section $d\sigma/d\Omega$ is an expression of the probability of interactions.

□ At LHC in 100 days of operation per year: $\int \mathcal{L} dt = 10 \text{ fb}^{-1} \text{ for } \mathcal{L} = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ □ Next e⁺e⁻ machines → few 10 x ab⁻¹

Instrumentation - 1

Ingredients for a typical HEP experiment :

- Find a nice region and build an accelerator there
- Design and build the detectors around BX points

Add :

- □ FE electronics
- Trigger and DAQ
- Control systems
- Physicists to operate the detector and analyse data
- Requirement to all the ingredients correlated (more often anti-correlated ⁽²⁾)

from J.Effel, Création du Monde

CMS A Compact Solenoidal Detector for LHC

ATLAS detector

Instrumentation - 1

The CERN accelerator complex

Instrumentation - 1

... or to discover

- 🗆 Inelastic: 10⁹ Hz
- Higgs (100 GeV/c²): 0.1 Hz
- □ Higgs (600 GeV/c²): 10⁻² Hz
- Selection : 1:10¹⁰⁻¹¹
- Operate in high radiation environment
- Resolve 20-25 superimposed events per BX
- High granularity detectors
- Fast electronics/detectors (25 ns)
 - Energy scale crucial !

What can we measure/register ?

Measure stable and quasi-stable particles (e, γ , μ , π , K, p, n, v):

Kinematics (momentum and/or energy)

The way particle interacts with / passes through detectors

All other particles reconstructed via their decays to (quasi-) stable particles : Invariant mass of the system of daughter particles

+ Decay vertex separated from production vertex for some particles decaying via weak interaction

Main goal of instrumentation for HEP :

Precisely/fast measure kinematics of (quasi-) stable particles

Unambiguously/fast identify them

For that :

We study how particles interact with the matter

and

We choose the **detector technologies** that match the physics tasks

Instrumentation - 1

General Statements

- → Any device that is to detect a particle must interact with it in some way.
- → If the particle is to pass through essentially undeviated, this interaction must be a soft electromagnetic one.

(Heavy) charged particle interaction with matter

Energy (kinetic) loss by Coulomb interaction with the atoms/electrons :

 Excitation : the atom (or molecule) is excited to a higher level atom^{*} → atom + γ low energy photons of de-excitation → light detection

Ionization : the electron is ejected from the atom electron / ion pair
 charge detection

Instead of ionization/excitation real photon can be produced under certain conditions

Cherenkov or Transition radiation

Contribute very little to the energy loss (< 5%), can be neglected but they are used for particle ID

Stopping power (-<dE/dx>) for positive muons in copper as a function of $\beta \gamma = p/Mc$ over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy). Solid curves indicate the total stopping power.

$$K = -4\pi N_A r_e^2 m_e c^2 \approx 0.307 MeV. g^{-1}. cm^2$$

Maximum kinetic energy that can be imparted to a free electron in a single collision : 2 - 2 - 2

$$T_{\rm max} = \frac{2m_e c^2 \,\beta^2 \gamma^2}{1 + 2\gamma m_e / M + (m_e / M)^2}$$

Bethe-Bloch with corrections yields few % accuracy for energy losses in Cu like material for the "Bethe-Bloch" region Bethe-Bloch at Low energy :

 \Box C/Z : shell correction to correct for atomic binding. At low energy the incident particles have less chance to interact with the electronic inner orbits. For copper ~1% at $\beta\gamma$ =0.3

 0.01 < β < 0.05 : phenomenological fitting, Andersen and Ziegler
 β < 0.01 ("velocity" of outer atomic electrons) : electronic stopping power ~ β, Lindhard
 at very low energy (e.g. < 100 eV protons) : non-ionizing energy loss dominates

□ Bethe-Bloch with corrections \rightarrow precise at ~1% level down to β ~0.05 (~1 MeV for protons)

Bethe-Bloch at High energy : "density effect"

Radiative effects become i

Relativistic rise ~2lnBy $\delta(\beta\gamma)/2$: charge density ef of the atoms along incoming pa => screening effect of the field, decreases loss at high energy.

At very high energies: $\delta/2 \rightarrow \ln(\hbar w_p/I) + \ln \beta \gamma - 1/2$

11 0.0

0.

Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.

Instrumentation - 1

Minimum Ionizing Particle :

Instrumentation - 1

The minimum is approximately independent of the material

 Minimum at βγ ~ 3 ... 4
 Similar for all elements ~2 MeV/(g/cm2)

Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.

Instrumentation - 1

The PEP4/9 - TPC data: dE/dx

Particle ID relying on dE/dx depends on p (and δp) and particle_hypothesis_1,2

Instrumentation - 1

Bethe Bloch describes the average energy loss. For moderate thickness absorber fluctuations on this energy loss described by a Landau distribution. For thin absorber (small dx) fluctuations become large The energy loss is larger at small E, i.e. end of the path in matter → Bragg peak Not used in HEP but is basic for medical application, hadron therapy

Energy loss of a 10 GeV muon in 1 cm of plastic scintillator ($\gamma = 1$) or a gas chamber ($\gamma = 0.001$)?

Muons can be considered as a MIP with 2 MeV/(g/cm²) → 2 MeV in 1 cm scintillator → 2 keV in 1 cm of gas To stop a 450 GeV muon beam, will need 900 m of concrete (density 2.5)!

How many meters of air to stop an a particle of 2 MeV?

Particle with very low β (below the minimum ionization) dE/dx around 700 MeV /(g/cm²) and $\rho = 1g/l \rightarrow 0.7$ MeV/cm Can stop **a** in 2-3 cm of air

Instrumentation - 1

Multiple scattering

□ A charged particle traversing a medium is deflected by many small-angle scatters mainly due to Coulomb scattering from nuclei \rightarrow multiple scattering. Affects precision of tracking

Multiple scattering

Effect of "O" if averaged for many particles, and seen as a fluctuation on a given one

... not the best means for measuring momentum though.

Electrons (and positrons) are different as they are light.

Energy loss for electrons/positrons involve mainly two different physics mechanisms:

- Excitation/ionization
 But collision between identical particles + electron is now deflected
- Bremsstrahlung : emission of photon by scattering with the nucleus electrical field

At high energies radiative processes dominate

Bremsstrahlung

Bremsstrahlung is the emission of photons by a charged particle accelerated in the Coulomb field of a nucleus.

→ we now have an additional photon

Pair production

Creation of an electron/positron pair in the field of an atom.

→ we now have e+e- pair instead of initial photon

Instrumentation - 1

Instrumentation - 1

Figure 27.13: Electron critical energy for the chemical elements, using Rossi's definition [4]. The fits shown are for solids and liquids (solid line) and gases (dashed line). The rms deviation is 2.2% for the solids and 4.0% for the gases. (Computed with code supplied by A. Fassó.)

Instrumentation - 1

Energy loss for photons

Energy loss for photons \rightarrow three major physics mechanisms :

Photo electric effect : absorption of a photon by an atom ejecting an electron

$$\sigma = Z^{5} \alpha^{4} \left(\frac{m_{e}c^{2}}{E_{\gamma}}\right)^{n} n = 7/2 \text{ for } E \ll m_{e}c^{2} \text{ and } \rightarrow 1 \text{ for } E \gg m_{e}c^{2}$$

Strong dependence with Z, dominant at low photon energy

Compton scattering $\sigma_c^e \propto \frac{lnE_{\gamma}}{E\gamma}$ and atomic compton = Z σ_c^e

Pair creation (similar to Bremsstrahlung) : dominant for E >> m_ec²

$$\sigma_{\text{pair}} \approx 4\alpha r_{e}^{2} Z^{2} \left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}}\right) = \frac{A}{N_{A}} \left(\frac{7}{9} \frac{1}{X_{0}}\right) \text{ Independent of energy !}$$

Probability of pair creation in 1 X₀ is $e^{-7/9}$, mean free path of a photon before creating a e^+e^- pair is $\Lambda_{pair} = 9/7 X_0$

Instrumentation - 1

Energy loss for photons

 $\begin{aligned} \sigma_{\text{p.e.}} &= \text{Atomic photoelectric effect (electron ejection, photon absorption)} \\ \sigma_{\text{Rayleigh}} &= \text{Rayleigh (coherent) scattering-atom neither ionized nor excited} \\ \sigma_{\text{Compton}} &= \text{Incoherent scattering (Compton scattering off an electron)} \\ \kappa_{\text{nuc}} &= \text{Pair production, nuclear field} \\ \kappa_e &= \text{Pair production, electron field} \\ \sigma_{\text{g.d.r.}} &= \text{Photonuclear interactions} \end{aligned}$

Instrumentation - 1

Related numbers

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.

Material	Ζ	A	$\langle Z/A \rangle$	Nuclear ^a collision length λ_T {g/cm ² }	Nuclear ^a interaction length λ_I {g/cm ² }	$\frac{dE/dx _{\min}}{\left\{\frac{\mathrm{MeV}}{\mathrm{g/cm}^2}\right\}}$	^b Radiati {g/cm ²	on length ${}^{6}_{X_0}$ } {cm}	$\begin{array}{l} \text{Density} \\ \{\text{g/cm}^3\} \\ (\{\text{g}/\ell\} \\ \text{for gas}) \end{array}$	Liquid boiling point at 1 atm(K)	$\begin{array}{c} \text{Refractive} \\ \text{index } n \\ ((n-1) \times 10^6 \\ \text{for gas}) \end{array}$
H ₂ gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28 \ ^{d}$	(731000)	(0.0838)[0.0899]		[139.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	$61.28 \ d$	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128[138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		·
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		2 1 - 1 3
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 ^e		
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205[298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22[296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092[67.1]
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
\mathbf{Ar}	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233[283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		1000
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		3 <u>4 - 1</u> 3
\mathbf{Sn}	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		37-76
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		1 0 01
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		9 <u>4 - 1</u> 97
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	≈ 18.95		

Instrumentation - 1

Electromagnetic showers

A high energy electron or photon incident on a thick absorber, initiates an EM cascade as pair production and Bremsstrahlung generate more electrons and photons with lower energy.

EM shower development

Lead absorbers in cloud chamber

Instrumentation - 1

EM showers

Longitudinal profile

Transverse profile

Multiple scattering for electrons
 Photons with energies in the region of minimal absorption travel away from shower axis

→ Molière radius sets transverse shower size, it gives the average lateral deflection of critical energy electrons after traversing 1X₀

$$R_{M} = \frac{21 \text{MeV}}{E_{C}} X_{0} (Z >> 1)$$

Transverse shower containment: **75%** E_0 within $1R_M$, **95%** within $2R_M$, **99%** within $3.5R_M$

From M. Diemoz, Torino 3-02-05

Instrumentation - 1

EM showers

□ EM shower development in liquid Krypton (Z=36, A=84)

Photons created

Charged particles created

27X₀

GEANT simulation: 100 GeVelectron shower in the NA48 liquid Krypton calorimeter

From D. Cockerill

0

Interaction of energetic hadrons (charged/neutral) through matter involves nuclear interaction :

excitation and nucleus break up => production of secondary particles + fragment

Number of particle produced ~ln (E) with average transverse p of 0.35 GeV/c

For E > 1 GeV, $\sigma \sim \sigma_0 A^{0.7}$, with σ_0 = 35 mb and independent of particle type π ,p,K,... Convenient to introduce the hadronic interaction (absorption) length :

$$\lambda_{I(a)} = \frac{A}{N_A \sigma_{total(inel)}} \propto A^{1/3} , N = N_0 e^{-\frac{x}{\lambda_a}}$$

Instrumentation - 1

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20° C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.

Material	Z	A	$\langle Z/A \rangle$	Nuclear a	Nuclear a	$dE/dx _{min}$	^b Radiati	ion length ^a	Density	Liquid	Refractive
				collision	interaction	(MeV)		X_0	$\{ m g/cm^3\}$	boiling	index n
				length λ_T	length λ_I	$\left\{\frac{110}{\pi/m^2}\right\}$	${\rm g/cm^2}$	${\rm cm}$	$(\{g/\ell\}$	point at	$((n-1) \times 10^{6})$
				$\{g/cm^2\}$	$\{g/cm^2\}$	(g/cm)			for gas)	$1 \mathrm{atm}(\mathrm{K})$	for gas)
H ₂ gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28 \ ^d$	(731000)	(0.0838)[0.0899]		[139.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	$61.28 \ ^{d}$	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128[138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		·
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		2 5 - 1 3
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 ^e		
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205[298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22[296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092[67.1]
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		<u> </u>
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233[283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		5 7 - 1 6
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		1
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		30-32
Sn	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		1
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		1
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		9 <u>4 1</u> 9
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	≈ 18.95		

Instrumentation - 1

Neutron has no charge, can be detected only through charged particle produced in (weak or) strong interaction => short range => very penetrating

Conversion and elastic scattering for E < 1 GeV. For instance
 n + ⁶Li → a +³H, n+³He→p+³H E < 20 MeV
 n + p → n + p E < 1 GeV
 Hadronic cascade for E > 1 GeV

Neutrons can travel sometimes for more than 1 µs in detectors
 → outside electronics readout window

A lot of low energy neutrons produced in LHC experiments
 Interactions in the whole cavern ...

Radiation levels in ATLAS (rad/year)

L. Serin

Strong constraint on detector technology and electronics : ageing in gaseous detectors light loss (transparency) in scintillators/cerenkov, atom displacement in solid detectors

Instrumentation - 1

- Only weak interaction
- v + n → l⁻ + p or anti v + p → l⁺ + n → detect the charged lepton and the nucleon recoil
- Detection efficiency in ~ 1 m iron about 6.10⁻¹⁷...
- Whatever technological improvement, neutrinos detector can only be huge detector
- In e+e- collider experiment, indirect detection :
 - "Fully" hermetic detector (!)
 - Sum all visible energy/momentum
 - Use beam energy constraint → neutrino(s) are taking the missing energy/momentum

Interaction of hadrons : many different particles produced, interaction length λ_T

Instrumentation - 1

Now we are (almost) ready to built our first detector but let us first look through common methods and tools

Gaseous detectors

Measure: hit and/or drift time → Position resolution: ~ 50 µm → Tracks reconstruction + Magnetic field → Momentum

[Measure also: energy loss dE/dx → Particle ID]

Silicon detectors

Measure: hits and/or amplitude

- ➔ Position resolution: ~ 5 µm
- ➔ Tracks & Vertices reconstruction

Instrumentation - 1

Cherenkov detectors

Measure: Cherenkov radiation angle (threshold)→ Particle ID

Radiator + Cherenkov light measurement + ... Example: LHCb Ring Imaging CHerenkov detector RICH

- Transition radiation detectors
- dE/dx from tracking detectors
- + Time-Of-Flight

```
+
```

Instrumentation - 1

Calorimeters: electromagnetic and hadronic

Measure: shower energy and/or shower shape

- → Energy resolution
- ➔ Position resolution:

~few mm

→ Particle ID

Muon detectors

Measure: Muon track after absorber → Particle ID

Muons in ATLAS

Criteria: efficiency and resolution

- □ Efficiency ~ amount of signal and Intrinsic detector resolution
 - □ Spatial resolution → degrade mass resolution via momentum measurement; contribute to combinatorial background via picking up random tracks and via PID.
 - □ Energy resolution → degrade mass resolution via energy measurement; contribute to combinatorial background via PID.
 - □ Time resolution → degrade mass resolution via contribution to spatial resolution in tracking devices; contribute to combinatorial background via pile-up and via PID.

Is the excess due to the decay of a particle into two photons?

Statistical significance : $S = N_s / \sqrt{N_B}$

 $N_{\rm S}\,(N_{\rm B})$: Number of signal (background) events, estimated in the peak region

 \rightarrow Lecture and practical work by Yonas

$S \sim \epsilon \sqrt{L/\sigma}$

- □ $5 > 5 \rightarrow signal > 5 times$ higher than the expected fluctuation on N_B
- \square Probability, that the background fluctuates by more than 5σ is 10^{-7}

→ Discovery

Criteria: efficiency and resolution

□ Signal treatment added to intrinsic detector resolution → Read-out electronics !

Q1

Silicon detectors

Gaseous detectors

Calorimeters

- \rightarrow Position resolution: ~ 5 μ m
- \rightarrow Position resolution: ~ 50 μ m
- ➔ Position resolution: few mm

Why calorimeters are very important for position measurements?

Q2

Two electromagnetic showers are initiated by an electron and by a photon. Which shower will penetrate deeper in the calorimeter ? Some units and conventions

