The Standard Model and beyond (2) QCD

Sébastien Descotes-Genon

Laboratoire de Physique Théorique
CNRS \& Université Paris-Sud, 91405 Orsay, France

July 13th 2018

Fermions

Bosons

First lecture

Quantum Field Theory

- Combining quantum mechanics and special relativity
- Fields able to create and annilate particles at points of space time
- Relativistic Lagrangian for spins 0 (Klein Gordon) and 1/2 (Dirac)
- In QFT to compute transition amplitudes from a state to another. . .
- ... involving intermediate states with different number of particles, not necessarily allowed in a classical theory

Quantum Electrodynamics

- Free classical Lag: Maxwell (em field A_{μ}) and Dirac (fermion ψ)
- Gauge principle: global invariance of Dirac theory (phase redef of ψ) into local (phase rotation depending on space-time position)
- Covariant derivative $D_{\mu} \psi$ involves a new spin 1 field, identified with A_{μ}, coupling electrons (associated with ψ) and photons $\left(\boldsymbol{A}_{\mu}\right)$
- Tested to a high accuracy: $(g-2)_{\mu}$, variation of α with energy

A more complicated kind of fermions the quarks

From leptons to quarks

Started with leptons, now we move to quarks

- constitute hadrons : baryons (qqq) and mesons ($q \bar{q}$)
- have flavours and colours

Flavours

- 1930s - Protons, neutrons, electrons

Flavours

- 1930s - Protons, neutrons, electrons
- '40-50-Cosmic rays: μ, π, "strange" particles $K, \wedge \ldots$

Flavours

- 1930s - Protons, neutrons, electrons
- '40-50-Cosmic rays: μ, π, "strange" particles $K, \wedge .$.
- '60s - Hadrons made of quarks up, down, strange

Flavours

- 1930s - Protons, neutrons, electrons
- '40-50-Cosmic rays: μ, π, "strange" particles $K, \wedge .$.
- '60s - Hadrons made of quarks up, down, strange
- 11/11/74-J/ Ψ : charm exists

Flavours

- 1930s - Protons, neutrons, electrons
- '40-50-Cosmic rays: μ, π, "strange" particles $K, \wedge .$.
- '60s - Hadrons made of quarks up, down, strange
- 11/11/74-J/ Ψ : charm exists
- 1977- Υ : bottom exists

Flavours

- 1930s - Protons, neutrons, electrons
- '40-50-Cosmic rays: μ, π, "strange" particles $K, \wedge .$.
- '60s - Hadrons made of quarks up, down, strange
- 11/11/74-J/ Ψ : charm exists
- 1977- Υ : bottom exists
- 1995 - Top exists

Flavours

- 1930s - Protons, neutrons, electrons
- '40-50-Cosmic rays: μ, π, "strange" particles $K, \wedge .$.
- '60s - Hadrons made of quarks up, down, strange
- 11/11/74-J/ Ψ : charm exists
- 1977- Υ : bottom exists
- 1995 - Top exists

6 flavours arranged in 3 generations, more and more massive

- 1 up-type quark $(Q=2 / 3)$
u, c, t
- 1 down-type quark $(Q=-1 / 3)$

$$
d, s, b
$$

Colours

- Quark model : proton uud, neutron udd...
- Among states discovered in 50's
$\Delta^{++}\left(J=3 / 2, J_{3}=3 / 2\right)=u^{\uparrow} u^{\uparrow} u^{\uparrow}$
- But Δ is a fermion, with antisymmetric wave function (Pauli)
\Longrightarrow additional d.o.f. : colour (green, blue, red)

$$
\Delta^{++}\left(J=3 / 2, J_{3}=3 / 2\right)=\epsilon^{\alpha \beta \gamma} u_{\alpha}^{\uparrow} u_{\beta}^{\uparrow} u_{\gamma}^{\uparrow}
$$

More generally, if i, j, k flavour and α, β, γ colour, hadrons combine quarks in colourless combination

- Baryons consist of $\epsilon^{a b c} q_{\alpha}^{i} q_{\beta}^{j} q_{\gamma}^{k}$
- Mesons consist of $\delta^{\alpha \beta} q_{\alpha}^{i} \bar{q}_{\beta}^{j}$
- Exotics?

How many colours?

$$
\begin{aligned}
R & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \simeq \frac{\sum_{q} \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \simeq N_{c} \sum_{q} Q_{q}^{2} \\
& =\left\{\begin{array}{cc}
2 / 3 \cdot N_{c} & (u, d, s) \\
10 / 9 \cdot N_{c} & (u, d, s, c) \\
11 / 9 \cdot N_{c} & (u, d, s, c, b)
\end{array}\right.
\end{aligned}
$$

vary when a $q \bar{q}$ threshold production is crossed

3 colours

Resonances after each $q \bar{q}$ threshold, then asymptotic value with

$$
N_{c}=3
$$

What can we do with quarks having flavours and colours ?

A short detour through symmetries

Symmetries

- In QED, symmetry under phase redefinition

$$
\psi \rightarrow e^{i \alpha Q} \psi
$$

- $U(1)$ equivalent to $O(2)$ symmetry, rotations in 2 dimensions

abelian (i.e.m commuting) group:

$$
R\left(\theta_{1}\right) R\left(\theta_{2}\right)=R\left(\theta_{2}\right) R\left(\theta_{1}\right)=R\left(\theta_{1}+\theta_{2}\right)
$$

Not always the case!

Nonabelian symmetries

Rotations in larger spaces are nonabelian, for instance $O(3)$: rotations and reflexions in 3 dimensions

- A group: $R_{1} R_{2}$ still a rotation, belongs to $O(3)$
- But not abelian: $R_{1} R_{2} \neq R_{2} R_{1}$
- Structure of the group specified by $\left[R_{1}, R_{2}\right]=R_{1} R_{2}-R_{2} R_{1}$

Group transformation

- Representation of the group : "how the object transforms" For instance, under a $S O(3)$ (three-dimensional) rotation
- scalar $S: S \rightarrow S$

Group transformation

- Representation of the group : "how the object transforms"

For instance, under a $S O(3)$ (three-dimensional) rotation

- scalar $S: S \rightarrow S$
- vector $A: A^{i} \rightarrow R^{i j} A^{j} \equiv\left[\exp \left[-i \theta_{a} J^{a}\right]\right]^{i j} A^{j}$

$$
J^{a}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

Group transformation

- Representation of the group : "how the object transforms" For instance, under a $S O(3)$ (three-dimensional) rotation
- scalar $S: S \rightarrow S$
- vector $A: A^{i} \rightarrow R^{i j} A^{j} \equiv\left[\exp \left[-i \theta_{a} J^{a}\right]\right]^{i j} A^{j}$

$$
J^{a}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

- spinor $\psi: \psi^{\alpha} \rightarrow\left[S_{1 / 2}(R)\right]^{\alpha \beta} \psi^{\beta} \equiv\left[\exp \left[-i \theta_{a} \sigma^{a} / 2\right]\right]^{\alpha \beta} \psi^{b}$

$$
\sigma^{a}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Group transformation

- Representation of the group : "how the object transforms"

For instance, under a $S O(3)$ (three-dimensional) rotation

- scalar $S: S \rightarrow S$
- vector $A: A^{i} \rightarrow R^{i j} A^{j} \equiv\left[\exp \left[-i \theta_{a} J^{a}\right]\right]^{i j} A^{j}$

$$
J^{a}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

- spinor $\psi: \psi^{\alpha} \rightarrow\left[S_{1 / 2}(R)\right]^{\alpha \beta} \psi^{\beta} \equiv\left[\exp \left[-i \theta_{a} \sigma^{a} / 2\right]\right]^{\alpha \beta} \psi^{b}$

$$
\sigma^{a}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Lie Algebra : "how the group is characterised" (indep of repres.)
$U=\exp \left(-i \theta_{a} T^{a}\right)$ with T^{a} traceless hermitian generators where $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} \quad f^{a b c}$ group structure csts

Group transformation

- Representation of the group : "how the object transforms"

For instance, under a $S O(3)$ (three-dimensional) rotation

- scalar $S: S \rightarrow S$
- vector $A: A^{i} \rightarrow R^{i j} A^{j} \equiv\left[\exp \left[-i \theta_{a} J^{a}\right]\right]^{i j} A^{j}$

$$
J^{a}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

- spinor $\psi: \psi^{\alpha} \rightarrow\left[S_{1 / 2}(R)\right]^{\alpha \beta} \psi^{\beta} \equiv\left[\exp \left[-i \theta_{a} \sigma^{a} / 2\right]\right]^{\alpha \beta} \psi^{b}$

$$
\sigma^{a}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Lie Algebra : "how the group is characterised" (indep of repres.)
$U=\exp \left(-i \theta_{a} T^{a}\right)$ with T^{a} traceless hermitian generators where $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} \quad f^{a b c}$ group structure csts

Rotations: $\quad\left[J^{a}, J^{b}\right]=i \epsilon^{a b c} J^{c} \quad\left[\sigma^{a} / 2, \sigma^{b} / 2\right]=i \epsilon^{a b c} \sigma^{c} / 2$
\Longrightarrow Infinitesimal version of the "table of multiplication" of the group

$S U(2)$ and $S U(3)$ groups

$U=\exp \left(-i \theta_{a} T^{a}\right) \in S U(N)$ parametrised by θ_{a}

$S U(2)$ and $S U(3)$ groups

$U=\exp \left(-i \theta_{a} T^{a}\right) \in S U(N)$ parametrised by θ_{a}

- $S U(2): a=1 \ldots 3$ matrices 2×2

Fundamental represent. $T^{a}=\frac{1}{2} \sigma^{a}$ from Pauli matr ($f^{a b c}=\epsilon^{a b c}$)

$$
\vec{\sigma}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$S U(2)$ and $S U(3)$ groups

$U=\exp \left(-i \theta_{a} T^{a}\right) \in S U(N)$ parametrised by θ_{a}

- $\operatorname{SU}(2): a=1 \ldots 3$ matrices 2×2

Fundamental represent. $T^{a}=\frac{1}{2} \sigma^{a}$ from Pauli matr $\left(f^{a b c}=\epsilon^{a b c}\right)$

$$
\vec{\sigma}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- $S U(3): a=1 \ldots 8$ matrices 3×3

Fundamental represent. $T^{a}=\frac{1}{2} \lambda^{a}$ from Gell-Mann matrices

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \ldots
$$

Flavour symmetry

For light flavours (u, d, s)

$$
\mathcal{L}_{D}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-M\right) \Psi \quad \quad \Psi=\left(\begin{array}{c}
u \\
d \\
s
\end{array}\right) \quad M=\left(\begin{array}{ccc}
m_{u} & & \\
& m_{d} & \\
& & m_{s}
\end{array}\right)
$$

Flavour symmetry

For light flavours (u, d, s)

$$
\mathcal{L}_{D}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-M\right) \Psi \quad \quad \Psi=\left(\begin{array}{c}
u \\
d \\
s
\end{array}\right) \quad M=\left(\begin{array}{ccc}
m_{u} & & \\
& m_{d} & \\
& & m_{s}
\end{array}\right)
$$

In the limit where $m_{u}=m_{d}\left[m_{u}=m_{d}=m_{s}\right]$,
\mathcal{L}_{D} isospin symmetric $S U_{F}(2)$ [flavour symmetric $S U_{F}(3)$]
$\mathcal{L}_{D} \rightarrow \mathcal{L}_{D}$ if $\Psi \rightarrow U \Psi$ and $\bar{\Psi} \rightarrow \bar{\psi} U^{\dagger}$ (global redefinition of u, d, s)
with U an $N_{f} \times N_{f}$ special unitary matrix: $U U^{\dagger}=U^{\dagger} U=1, \quad \operatorname{det} U=1$

The eightfold way

$S U(3)$ (global) flavour symmetry: u, d, s equivalent for strong forces \Longrightarrow almost degenerate spectrum (hadrons bound states of quarks) organised in multiplets given by $S U(3)$ representations

Nonet of mesons

Decuplet of baryons
octets and decuplets with approximately identical masses (also used to relate processes for different members of multiplets)

Colour

Colour symmetry

- Free coloured quarks $q=\left(\begin{array}{l}q \\ q \\ q\end{array}\right) \quad \mathcal{L}=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q$ with a global colour symmetry $q(x) \rightarrow U q(x)=\exp \left[i \alpha_{a} \lambda^{a} / 2\right] q(x)$
- Colour related to strong interaction, interpreted as a charge ?

Colour symmetry

- Free coloured quarks $q=\left(\begin{array}{l}q \\ q \\ q\end{array}\right) \quad \mathcal{L}=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q$ with a global colour symmetry $q(x) \rightarrow U q(x)=\exp \left[i \alpha_{a} \lambda^{a} / 2\right] q(x)$
- Colour related to strong interaction, interpreted as a charge ?
- Gauge principle : $\quad q(x) \rightarrow U(x) q(x)=\exp \left[i \alpha_{a}(x) \lambda^{a} / 2\right] q$

Colour symmetry

- Free coloured quarks $q=\left(\begin{array}{l}q \\ q \\ q\end{array}\right) \quad \mathcal{L}=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q$ with a global colour symmetry $q(x) \rightarrow U q(x)=\exp \left[i \alpha_{a} \lambda^{a} / 2\right] q(x)$
- Colour related to strong interaction, interpreted as a charge ?
- Gauge principle: $q(x) \rightarrow U(x) q(x)=\exp \left[i \alpha_{a}(x) \lambda^{a} / 2\right] q$
- Covariant derivative : $\left\{\begin{array}{r}D_{\mu} q=\left(1_{3} \partial_{\mu}-i g_{s} G_{\mu}\right) q \rightarrow U D_{\mu} q \\ G_{\mu} \rightarrow U G_{\mu} U^{\dagger}-\frac{i}{g_{s}}\left(\partial^{\mu} U\right) U^{\dagger}\end{array}\right.$

$$
G_{\alpha \beta}^{\mu}=G_{a}^{\mu}\left(\lambda^{a}\right)_{\alpha \beta} / 2 \text { collects eight gluons ! }
$$

Colour symmetry

- Free coloured quarks $q=\left(\begin{array}{l}q \\ q \\ q\end{array}\right) \quad \mathcal{L}=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q$ with a global colour symmetry $q(x) \rightarrow U q(x)=\exp \left[i \alpha_{a} \lambda^{a} / 2\right] q(x)$
- Colour related to strong interaction, interpreted as a charge ?
- Gauge principle : $q(x) \rightarrow U(x) q(x)=\exp \left[i \alpha_{a}(x) \lambda^{a} / 2\right] q$
- Covariant derivative : $\left\{\begin{array}{r}D_{\mu} q=\left(1_{3} \partial_{\mu}-i g_{s} G_{\mu}\right) q \rightarrow U D_{\mu} q \\ G_{\mu} \rightarrow U G_{\mu} U^{\dagger}-\frac{i}{g_{s}}\left(\partial^{\mu} U\right) U^{\dagger}\end{array}\right.$

$$
G_{\alpha \beta}^{\mu}=G_{a}^{\mu}\left(\lambda^{a}\right)_{\alpha \beta} / 2 \text { collects eight gluons ! }
$$

QED
One phase $U(1)$
Abelian symmetry
1 parameter

QCD
Three colours $S U(3)$
Nonabelian symmetry

8 parameters

QCD Lagrangian

Invariance under local colour rotations yields QCD Lagrangian

QCD Lagrangian

Invariance under local colour rotations yields QCD Lagrangian

- A term for the quarks : free + interaction

$$
\begin{aligned}
\mathcal{L}_{D} & =\bar{q}\left(i \gamma^{\mu} D_{\mu}-m\right) q \\
& =\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q+\frac{g_{s}}{2} \bar{q}_{\alpha}\left(\lambda^{a}\right)_{\alpha \beta} \gamma^{\mu} q_{\beta} G_{\mu}^{a}
\end{aligned}
$$

QCD Lagrangian

Invariance under local colour rotations yields QCD Lagrangian

- A term for the quarks : free + interaction

$$
\begin{aligned}
\mathcal{L}_{D} & =\bar{q}\left(i \gamma^{\mu} D_{\mu}-m\right) q \\
& =\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q+\frac{g_{s}}{2} \bar{q}_{\alpha}\left(\lambda^{a}\right)_{\alpha \beta} \gamma^{\mu} q_{\beta} G_{\mu}^{a}
\end{aligned}
$$

- but also a kinetic term for the gluons

$$
\mathcal{L}_{F}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}=-\frac{1}{2} \operatorname{Tr}\left[G^{\mu \nu} G_{\mu \nu}\right]
$$

where $G^{\mu \nu}$ is the analogue of electromagnetic $F^{\mu \nu}$

$$
G^{\mu \nu}=\frac{i}{g_{s}}\left[D^{\mu}, D^{\nu}\right]=\partial^{\mu} G^{\nu}-\partial^{\nu} G^{\mu}-i g_{s}\left[G^{\mu}, G^{\nu}\right] \rightarrow U G^{\mu \nu} U^{\dagger}
$$

QCD Lagrangian

Invariance under local colour rotations yields QCD Lagrangian

- A term for the quarks : free + interaction

$$
\begin{aligned}
\mathcal{L}_{D} & =\bar{q}\left(i \gamma^{\mu} D_{\mu}-m\right) q \\
& =\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q+\frac{g_{s}}{2} \bar{q}_{\alpha}\left(\lambda^{a}\right)_{\alpha \beta} \gamma^{\mu} q_{\beta} G_{\mu}^{a}
\end{aligned}
$$

- but also a kinetic term for the gluons

$$
\mathcal{L}_{F}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}=-\frac{1}{2} \operatorname{Tr}\left[G^{\mu \nu} G_{\mu \nu}\right]
$$

where $G^{\mu \nu}$ is the analogue of electromagnetic $F^{\mu \nu}$

$$
G^{\mu \nu}=\frac{i}{g_{s}}\left[D^{\mu}, D^{\nu}\right]=\partial^{\mu} G^{\nu}-\partial^{\nu} G^{\mu}-i g_{s}\left[G^{\mu}, G^{\nu}\right] \rightarrow U G^{\mu \nu} U^{\dagger}
$$

- No mass term (not gauge invariant), hence gluons are massless
- Interactions: q-q-g from $\mathcal{L}_{D}, 3$ gluons and 4 gluons from \mathcal{L}_{F} [new !]

QCD interactions

$g_{s} \gamma^{\mu} \lambda_{\alpha \beta} / 2$

$g_{s} f^{a b c}$

$g_{s}^{2} f_{a b c} f_{a d e}$

Differences from electromagnetism

- Gluons themselves sensitive to strong interaction
- Universal coupling g_{s} (no "colour-electric charge")

Consequences of QCD for strong interaction

Asymptotic freedom

And vacuum polarisation, e.g. gluon exchange between 2 quarks ?

Asymptotic freedom

And vacuum polarisation, e.g. gluon exchange between 2 quarks ?

Pairs of virtual quarks AND gluons from the vacuum

- modification of $\alpha_{s}=g_{S}^{2} /(4 \pi)$ with the distance/energy

$$
\frac{d g_{s}(q)}{d \log (q)}=\beta(g)=-\frac{g^{3}}{4 \pi^{2}}\left[\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right]+\ldots
$$

Asymptotic freedom

And vacuum polarisation, e.g. gluon exchange between 2 quarks?

Pairs of virtual quarks AND gluons from the vacuum

- modification of $\alpha_{s}=g_{s}^{2} /(4 \pi)$ with the distance/energy

$$
\frac{d g_{s}(q)}{d \log (q)}=\beta(g)=-\frac{g^{3}}{4 \pi^{2}}\left[\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right]+\ldots
$$

- N_{f} from quarks : α_{s} increases at small distances (large q)

Asymptotic freedom

And vacuum polarisation, e.g. gluon exchange between 2 quarks?

Pairs of virtual quarks AND gluons from the vacuum

- modification of $\alpha_{s}=g_{s}^{2} /(4 \pi)$ with the distance/energy

$$
\frac{d g_{s}(q)}{d \log (q)}=\beta(g)=-\frac{g^{3}}{4 \pi^{2}}\left[\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right]+\ldots
$$

- N_{f} from quarks : α_{s} increases at small distances (large q)
- N_{c} from gluons : α_{s} decreases at small distances

Asymptotic freedom

And vacuum polarisation, e.g. gluon exchange between 2 quarks ?

Pairs of virtual quarks AND gluons from the vacuum

- modification of $\alpha_{s}=g_{s}^{2} /(4 \pi)$ with the distance/energy

$$
\frac{d g_{s}(q)}{d \log (q)}=\beta(g)=-\frac{g^{3}}{4 \pi^{2}}\left[\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right]+\ldots
$$

- N_{f} from quarks : α_{s} increases at small distances (large q)
- N_{c} from gluons : α_{s} decreases at small distances
- in our world ($N_{c}=3, N_{f}=6$), the gluons win and $\beta<0$!
α_{s} decrease at small distances

α_{s} at various scales

\Longrightarrow asymptotic freedom:
at large energies, interactions (prop to g_{s}) small perturbations

Consistency over a very large range of energies (from m_{τ} up to LHC $p p$ collisions)

Confinement

At distances of order $1 \mathrm{fm}, \alpha_{s}$ becomes of $O(1), V_{q q}(r) \sim r($ not $1 / r!)$

Confinement

At distances of order $1 \mathrm{fm}, \alpha_{s}$ becomes of $O(1), V_{q q}(r) \sim r($ not $1 / r!)$

- Quarks cannot escape from hadrons, confined in radius of $O(1 \mathrm{fm})$

Confinement

At distances of order $1 \mathrm{fm}, \alpha_{s}$ becomes of $O(1), V_{q q}(r) \sim r($ not $1 / r!)$

- Quarks cannot escape from hadrons, confined in radius of $O(1 \mathrm{fm})$
- No perturbation theory possible for soft physics (below 1 GeV)

Confinement

At distances of order $1 \mathrm{fm}, \alpha_{s}$ becomes of $O(1), V_{q q}(r) \sim r($ not $1 / r!)$

- Quarks cannot escape from hadrons, confined in radius of $O(1 \mathrm{fm})$
- No perturbation theory possible for soft physics (below 1 GeV)
- Often processes mixture of strong and electroweak
\Longrightarrow quark decays weakly into another quark inside a hadron

Confinement

At distances of order $1 \mathrm{fm}, \alpha_{s}$ becomes of $O(1), V_{q q}(r) \sim r($ not $1 / r!)$

- Quarks cannot escape from hadrons, confined in radius of $O(1 \mathrm{fm})$
- No perturbation theory possible for soft physics (below 1 GeV)
- Often processes mixture of strong and electroweak
\Longrightarrow quark decays weakly into another quark inside a hadron
- Hard to connect theory (quarks) and experiment (hadrons)
- solve numerically the equations (lattice gauge theory)
- build a theory of more limited scope (effective field theory)

Lattice gauge theories

Compute propagation and decay of a particle

- Discretise space and time (lattice spacing)
- Finite 4D box (finite-volume effects) with Euclidean metric
- Sum over all possible configurations (Monte Carlo methods)

Recent progress in understanding effect of (virtual) sea quarks, finite volume, lattice spacing and renormalisation...

Deep inelastic scattering: parton model

$$
\begin{gathered}
e^{-}(k) p(P) \rightarrow e^{-}\left(k^{\prime}\right)+X \\
2 \text { kinematic variables } \\
x=-\frac{q^{2}}{2 P \cdot q}, y=\frac{P \cdot q}{P \cdot k} \quad\left(q=k-k^{\prime}\right) \\
\text { In parton model } \\
\text { energetic proton made of } \\
\text { nearly collinear partons }
\end{gathered}
$$

Deep inelastic scattering: parton model

$$
\begin{gathered}
e^{-}(k) p(P) \rightarrow e^{-}\left(k^{\prime}\right)+X \\
2 \text { kinematic variables } \\
x=-\frac{q^{2}}{2 P \cdot q}, y=\frac{P \cdot q}{P \cdot k} \quad\left(q=k-k^{\prime}\right) \\
\text { In parton model } \\
\text { energetic proton made of } \\
\text { nearly collinear partons }
\end{gathered}
$$

$$
\frac{d^{2} \sigma}{d x d y}=\sum_{f}\left[x f_{f}(x) Q_{f}^{2}\right] \times \frac{4 \pi \alpha^{2}(P \cdot k)}{q^{4}}\left[1+(1-y)^{2}\right]
$$

$f_{f}(x)$: parton distribution function, probability of finding a constituent f with a longitudinal fraction x of momentum
\Longrightarrow Parton model: scaling of the cross section with x

Deep inelastic scattering : QCD

$$
\begin{gathered}
e^{-}(k) p(P) \rightarrow e^{-}\left(k^{\prime}\right)+X \\
q=k-k^{\prime} \quad x=-\frac{q^{2}}{2 P \cdot q} \quad y=\frac{P \cdot q}{P \cdot k}
\end{gathered}
$$

Deep inelastic scattering : QCD

$$
\begin{gathered}
e^{-}(k) p(P) \rightarrow e^{-}\left(k^{\prime}\right)+X \\
q=k-k^{\prime} \quad x=-\frac{q^{2}}{2 P \cdot q} \quad y=\frac{P \cdot q}{P \cdot k}
\end{gathered}
$$

QCD provides corrections to the parton scaling

$$
\frac{d^{2} \sigma}{d x d y}=\sum_{f}\left[x f_{f}(x, q) Q_{f}^{2}\right] \times \frac{4 \pi \alpha^{2}(P \cdot k)}{q^{4}}\left[1+(1-y)^{2}\right]+O\left(\alpha_{s}\right)
$$

$f_{f}(x, q)$: probability of finding a constituent f
with a longitudinal fraction x of momentum

Deep inelastic scattering : QCD

$$
\begin{gathered}
e^{-}(k) p(P) \rightarrow e^{-}\left(k^{\prime}\right)+X \\
q=k-k^{\prime} \quad x=-\frac{q^{2}}{2 P \cdot q} \quad y=\frac{P \cdot q}{P \cdot k}
\end{gathered}
$$

QCD provides corrections to the parton scaling

$$
\frac{d^{2} \sigma}{d x d y}=\sum_{f}\left[x f_{f}(x, q) Q_{f}^{2}\right] \times \frac{4 \pi \alpha^{2}(P \cdot k)}{q^{4}}\left[1+(1-y)^{2}\right]+O\left(\alpha_{s}\right)
$$

$f_{f}(x, q)$: probability of finding a constituent f with a longitudinal fraction x of momentum

Two types of QCD correction

- $O\left(\alpha_{s}\right)$ and higher-order corrections to vertex
- variation of $f_{f}(x, q)$ with q

F_{2} measurements

Measurements of

$$
F_{2}=\sum_{f} x Q_{f}^{2} f_{f}(x, q)
$$

> Variations with q in agreement with QCD

Jets

In collisions, quarks/gluons emit further gluons/quarks and lose energy, until they become soft (around 1 GeV) and bind into hadrons

Two jets

$$
e^{+} e^{-} \rightarrow q \bar{q} g
$$

Three jets
\Longrightarrow Global observables, dependent on high energies (infrared safe), well described by perturbative QCD : total σ, thrust, sphericity

QCD@LHC

- Separation of scales between hard (perturbative) and soft (hadronic) dynamics
- Probe QCD and approximate models for Monte Carlo simulations
- Constraining α_{s} and/or parton distribution functions
- Good agreement with NLO QCD over 11 orders of magnitude
- Next steps: NNLO (already for $t \bar{t}$ production), processes with H

End of part II

