The Standard Model and beyond (4) Electroweak symmetry breaking and the Higgs boson

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud, 91405 Orsay, France

July 14th 2018

Sébastien Descotes-Genon (LPT-Orsay)

Third lecture

Charge and Parity conjugation

- Discrete symmetries
- Obeyed by electromagnetic and strong interactions, but not weak
- Connection with left and right-handed chiralities of fermions ?

Weak interaction

- Charged-current transitions involving only left-handed fermions
- Neutral-current transitions involving neutrinos, no flavour change
- Distinguishing left-handed doublets and right-handed singlets
- Symmetry group $SU(2)_L \times U(1)_Y$ promoted to local symmetry
- 3 W_μ bosons and 1 B_μ leading to observed W[±] (charge current for left-handed), A_μ and Z_μ (neutral current for left and right-handed)
- with given couplings related to QED couplings
- symmetry too powerful: no mass terms for bosons and fermions

Symmetry breaking

The trouble with the theory

 $SU(2)_L \times U(1)_Y$ a wonderful theory ?

- Description of weak and electromagnetic gauge bosons
- Universality of the couplings
- Chiral theory (left- and right-hd fermions are different)
- ... but fermion and boson masses forbidden by gauge symmetry !

We should keep enough symmetry for gauge interactions, but break enough to allow for masses in the spectrum

Ordered and unordered phase

Take a ferromagnet above the Curie temperature, without external field

Spin-spin interaction $\vec{S}_i \cdot \vec{S}_j$ invariant under rotations O(3)

No order and no privileged direction

Spontaneous breakdown of symmetry

Under Curie temperature : Spontaneous magnetisation $\langle \sum_i \vec{S}_j \rangle \neq \vec{0}$

Privileged direction for states, although no dir. privileged in interaction

Spontaneous breakdown of symmetry symmetries of interactions not explicit in states [interactions] $O(3) \rightarrow O(2)$ [states]

An example closer to particle physics

Classically, take a spin-0 complex field ϕ $\mathcal{L} = \partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi - V(\phi)$

with a scalar potential V containing mass term + interactions

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

V is invariant under reparametrisation $\phi(x) \rightarrow e^{i\alpha}\phi(x)$

An example closer to particle physics

Classically, take a spin-0 complex field ϕ $\mathcal{L} = \partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi - V(\phi)$

with a scalar potential V containing mass term + interactions

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

V is invariant under reparametrisation $\phi(x) \rightarrow e^{i\alpha}\phi(x)$

For
$$\lambda > 0$$
 and $\mu^2 > 0$

Trivial minimum $\phi_0 = 0$ invariant under phase reparametrisation

Spectrum : a charged particle (and its antiparticle) with the mass $m_{\phi} = \mu$

Two directions

Classically, same scalar potential $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$

For $\lambda > 0$ and $\mu^2 < 0$

ring of nontrivial minima $|\phi_0| = \sqrt{\frac{-\mu^2}{2\lambda}} = \frac{v}{\sqrt{2}} > 0$

Two directions

Classically, same scalar potential $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$

For $\lambda > 0$ and $\mu^2 < 0$

ring of nontrivial minima $|\phi_0| = \sqrt{\frac{-\mu^2}{2\lambda}} = \frac{v}{\sqrt{2}} > 0$

Spontaneous breaking of rotation symmetry by the fundamental state

To determine the spectrum of the theory

- Determine the (nontrivial) vacuum
- Expand the theory around it

Sébastien Descotes-Genon (LPT-Orsay)

• Minimum given by vacuum expectation value of ϕ : $\langle 0|\phi|0\rangle = v$

- Minimum given by vacuum expectation value of ϕ : $\langle 0|\phi|0\rangle = v$
- Expand the QFT around this (non-trivial) minimum

$$\phi(x) = \frac{1}{\sqrt{2}} [v + \phi_1(x)] e^{i\phi_2(x)/v}$$

- Minimum given by vacuum expectation value of ϕ : $\langle 0|\phi|0\rangle = v$
- Expand the QFT around this (non-trivial) minimum

$$\phi(x) = \frac{1}{\sqrt{2}} [v + \phi_1(x)] e^{i\phi_2(x)/v}$$

$$\mathcal{L} = \partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi - V(\phi)$$

= $\frac{1}{2} \partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + \frac{1}{2} \left(1 + \frac{\phi_1}{v}\right)^2 \partial_{\mu} \phi_2 \partial^{\mu} \phi_2$
 $- \left[V(\phi_0) + \frac{1}{2} m_{\phi_1}^2 \phi_1^2 + \lambda v \phi_1^3 + \frac{1}{4} \lambda \phi_1^4\right]$

- Minimum given by vacuum expectation value of ϕ : $\langle 0|\phi|0\rangle = v$
- Expand the QFT around this (non-trivial) minimum

$$\phi(x) = \frac{1}{\sqrt{2}} [v + \phi_1(x)] e^{i\phi_2(x)/v}$$

• Express the Lagrangian in terms of real $\phi_{1,2}$

$$\mathcal{L} = \partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi - V(\phi)$$

= $\frac{1}{2} \partial_{\mu} \phi_{1} \partial^{\mu} \phi_{1} + \frac{1}{2} \left(1 + \frac{\phi_{1}}{v}\right)^{2} \partial_{\mu} \phi_{2} \partial^{\mu} \phi_{2}$
 $- \left[V(\phi_{0}) + \frac{1}{2} m_{\phi_{1}}^{2} \phi_{1}^{2} + \lambda v \phi_{1}^{3} + \frac{1}{4} \lambda \phi_{1}^{4}\right]$

One massive particle φ₁ (mass √2μ) with self interactions φ₁k
 One massless particle φ₂, called Goldstone boson, with presence related to symmetry breaking

- Minimum given by vacuum expectation value of ϕ : $\langle 0|\phi|0\rangle = v$
- Expand the QFT around this (non-trivial) minimum

$$\phi(x) = \frac{1}{\sqrt{2}} [v + \phi_1(x)] e^{i\phi_2(x)/v}$$

• Express the Lagrangian in terms of real $\phi_{1,2}$

$$\mathcal{L} = \partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi - V(\phi)$$

= $\frac{1}{2} \partial_{\mu} \phi_{1} \partial^{\mu} \phi_{1} + \frac{1}{2} \left(1 + \frac{\phi_{1}}{v}\right)^{2} \partial_{\mu} \phi_{2} \partial^{\mu} \phi_{2}$
 $- \left[V(\phi_{0}) + \frac{1}{2} m_{\phi_{1}}^{2} \phi_{1}^{2} + \lambda v \phi_{1}^{3} + \frac{1}{4} \lambda \phi_{1}^{4}\right]$

One massive particle φ₁ (mass √2μ) with self interactions φ₁k
 One massless particle φ₂, called Goldstone boson, with presence related to symmetry breaking

This was for a global rotation symmetry what about the local electroweak symmetry ?

Sébastien Descotes-Genon (LPT-Orsay)

How to break electroweak symmetry in the "right" way ?

• New spin-0 complex doublet $\phi = \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix}$ [= 4 scalar particles]

How to break electroweak symmetry in the "right" way ?

- New spin-0 complex doublet $\phi = \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix}$ [= 4 scalar particles]
- Transformation properties under $SU(2)_L \otimes U(1)_Y$ $\phi \rightarrow e^{iy_{\phi}\beta}U_L\phi \quad SU(2)_L$ doublet with $y_{\phi} = 1/2$ [Q: ⁽⁺⁾, ⁽⁰⁾]

How to break electroweak symmetry in the "right" way ?

- New spin-0 complex doublet $\phi = \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix}$ [= 4 scalar particles]
- Transformation properties under $SU(2)_L \otimes U(1)_Y$ $\phi \rightarrow e^{iy_{\phi}\beta}U_L\phi \quad SU(2)_L$ doublet with $y_{\phi} = 1/2$ [Q: (+), (0)]
- Write down its Lagrangian
 - $\begin{aligned} \mathcal{L}_{\mathcal{H}} &= (D_{\mu}\phi)^{\dagger}(D_{\mu}\phi) \mu^{2}\phi^{\dagger}\phi \lambda(\phi^{\dagger}\phi)^{2} \\ D^{\mu}\phi &= [\partial^{\mu} igW^{\mu} ig'y_{\phi}B^{\mu}]\phi \end{aligned}$

How to break electroweak symmetry in the "right" way ?

- New spin-0 complex doublet $\phi = \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix}$ [= 4 scalar particles]
- Transformation properties under $SU(2)_L \otimes U(1)_Y$ $\phi \rightarrow e^{iy_{\phi}\beta}U_L\phi \quad SU(2)_L$ doublet with $y_{\phi} = 1/2$ [Q: (+), (0)]
- Write down its Lagrangian
 - $\begin{aligned} \mathcal{L}_{\mathcal{H}} &= (D_{\mu}\phi)^{\dagger}(D_{\mu}\phi) \mu^{2}\phi^{\dagger}\phi \lambda(\phi^{\dagger}\phi)^{2} \\ D^{\mu}\phi &= [\partial^{\mu} igW^{\mu} ig'y_{\phi}B^{\mu}]\phi \end{aligned}$

• $\lambda > 0$ and $\mu^2 < 0$ yields degenerate vacuum states

$$|\langle 0|\phi^{(0)}|0\rangle| = \sqrt{\frac{-\mu^2}{2\lambda}} = \frac{\nu}{\sqrt{2}} \qquad |\langle 0|\phi^{(+)}|0\rangle| = 0$$

with direction chosen not to break gauge invariance for electromag

- Take the previous theory for electroweak unification
- Add the symmetry breaking part involving ϕ
- Write all the relevant couplings between φ and the other fields (gauge bosons, fermions)

- Take the previous theory for electroweak unification
- Add the symmetry breaking part involving ϕ
- Write all the relevant couplings between φ and the other fields (gauge bosons, fermions)
- Determine the properties of the theory by expanding around the symmetry-breaking minimum

$$\phi(x) = \exp\left[i\vec{\theta}(x)\frac{\vec{\sigma}}{2}\right] \left(\begin{array}{c}0\\(v+H(x))/\sqrt{2}\end{array}\right)$$

- Take the previous theory for electroweak unification
- Add the symmetry breaking part involving ϕ
- Write all the relevant couplings between φ and the other fields (gauge bosons, fermions)
- Determine the properties of the theory by expanding around the symmetry-breaking minimum

$$\phi(x) = \exp\left[i\vec{ heta}(x)\frac{\vec{\sigma}}{2}\right] \left(egin{array}{c} 0 \ (v+H(x))/\sqrt{2} \end{array}
ight)$$

• Actually, $SU(2)_L$ invariance allows us to simplify the description \implies with $SU(2)_L$ gauge transf, we can take unitarity gauge $\vec{\theta}(x) = 0$

- Take the previous theory for electroweak unification
- Add the symmetry breaking part involving ϕ
- Write all the relevant couplings between φ and the other fields (gauge bosons, fermions)
- Determine the properties of the theory by expanding around the symmetry-breaking minimum

$$\phi(x) = \exp\left[iec{ heta}(x)rac{ec{\sigma}}{2}
ight] \left(egin{array}{c} 0 \ (v+H(x))/\sqrt{2} \end{array}
ight)$$

- Actually, $SU(2)_L$ invariance allows us to simplify the description \implies with $SU(2)_L$ gauge transf, we can take unitarity gauge $\vec{\theta}(x) = 0$
- Check the phenomenological consequences

Masses of the gauge bosons

Kinematic terms of ϕ contains covariant derivatives coupling to W, Z

$$\begin{aligned} \mathcal{L}_{H} & \ni \quad (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) \\ &= \quad \frac{1}{2}\partial_{\mu}H\partial^{\mu}H + \frac{g^{2}}{4}(\nu+H)^{2}[W^{\dagger}_{\mu}W^{\mu} + \frac{1}{2}\cos^{2}\theta_{W}Z_{\mu}Z^{\mu}] \\ & \rightarrow \quad \frac{g^{2}\nu^{2}}{4}[W^{\dagger}_{\mu}W^{\mu} + \frac{1}{2}\cos^{2}\theta_{W}Z_{\mu}Z^{\mu}] \end{aligned}$$

reexpressed in terms of physical states A, W, Z

Masses of the gauge bosons

Kinematic terms of ϕ contains covariant derivatives coupling to W, Z

$$\begin{aligned} \mathcal{L}_{H} & \ni \quad (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) \\ &= \quad \frac{1}{2}\partial_{\mu}H\partial^{\mu}H + \frac{g^{2}}{4}(\nu+H)^{2}[W^{\dagger}_{\mu}W^{\mu} + \frac{1}{2}\cos^{2}\theta_{W}Z_{\mu}Z^{\mu}] \\ & \rightarrow \quad \frac{g^{2}\nu^{2}}{4}[W^{\dagger}_{\mu}W^{\mu} + \frac{1}{2}\cos^{2}\theta_{W}Z_{\mu}Z^{\mu}] \end{aligned}$$

reexpressed in terms of physical states A, W, Z

- Em gauge invariance: no $A_{\mu}A^{\mu}$ term, photon massless,
- Massive weak gauge bosons: $M_Z \cos \theta_W = M_W = \frac{1}{2}vg$
- Symmetry breaking: $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$

Higgs mechanism

Massless W^{\pm}, Z 4 scalar d.o.f. $\vec{\theta}$. H

D m D m D $m Z^0Z^0+X
m
m H$ $m e^+e^-\mu^+\mu^-+X$ $pp \rightarrow W^+W^- + X \rightarrow \mu^- \bar{\nu}_\mu q \bar{q}'$ with one massive Higgs H remaining as an observable particle ! Higgs mech. (W, Z eating Goldstone) \neq Higgs boson (dinner leftovers)

Coupling of *H* to the gauge bosons

Scalar Lagrangian contains Higgs interactions with the gauge bosons

Sébastien Descotes-Genon (LPT-Orsay)

Gauge symmetry allows Yukawa coupling of scalar ϕ with 2 fermions: 1 left-handed doublet and 1 right-handed singlet

$$\mathcal{L}_{Y} = (\bar{q}_{u} \ \bar{q}_{d})_{L} \left[c^{(d)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} (q_{d})_{R} + c^{(u)} \begin{pmatrix} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{pmatrix} (q_{u})_{R} \right]$$

$$+ (\bar{\nu}_{\ell} \ \bar{\ell})_{L} c^{(\ell)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} \ell_{R} + h.c.$$

Gauge symmetry allows Yukawa coupling of scalar ϕ with 2 fermions: 1 left-handed doublet and 1 right-handed singlet

$$\mathcal{L}_{Y} = (\bar{q}_{u} \ \bar{q}_{d})_{L} \left[c^{(d)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} (q_{d})_{R} + c^{(u)} \begin{pmatrix} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{pmatrix} (q_{u})_{R} \right] \\ + (\bar{\nu}_{\ell} \ \bar{\ell})_{L} c^{(\ell)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} \ell_{R} + h.c.$$

yielding, once reexpressed around vacuum

$$\mathcal{L}_{Y} = -\left(1 + rac{H}{v}\right)\left[m_{q_{d}}ar{q}_{d}q_{d} + m_{q_{u}}ar{q}_{u}q_{u} + m_{\ell}ar{\ell}\ell
ight]$$

Gauge symmetry allows Yukawa coupling of scalar ϕ with 2 fermions: 1 left-handed doublet and 1 right-handed singlet

$$\mathcal{L}_{Y} = (\bar{q}_{u} \ \bar{q}_{d})_{L} \left[c^{(d)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} (q_{d})_{R} + c^{(u)} \begin{pmatrix} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{pmatrix} (q_{u})_{R} \right]$$
$$+ (\bar{\nu}_{\ell} \ \bar{\ell})_{L} c^{(\ell)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} \ell_{R} + h.c.$$

yielding, once reexpressed around vacuum

$$\mathcal{L}_{Y} = -\left(1 + \frac{H}{v}\right)\left[m_{q_{d}}\bar{q}_{d}q_{d} + m_{q_{u}}\bar{q}_{u}q_{u} + m_{\ell}\bar{\ell}\ell
ight]$$

- Fermion masses are fixed by Yukawa gauge couplings $g_{Hf\bar{f}} = m_f/v$
- The heavier the fermion, the stronger the coupling to Higgs

Gauge symmetry allows Yukawa coupling of scalar ϕ with 2 fermions: 1 left-handed doublet and 1 right-handed singlet

$$\mathcal{L}_{Y} = (\bar{q}_{u} \ \bar{q}_{d})_{L} \left[c^{(d)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} (q_{d})_{R} + c^{(u)} \begin{pmatrix} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{pmatrix} (q_{u})_{R} \right] \\ + (\bar{\nu}_{\ell} \ \bar{\ell})_{L} c^{(\ell)} \begin{pmatrix} \phi^{(+)} \\ \phi^{(0)} \end{pmatrix} \ell_{R} + h.c.$$

yielding, once reexpressed around vacuum

$$\mathcal{L}_{Y} = -\left(1 + \frac{H}{v}\right)\left[m_{q_{d}}\bar{q}_{d}q_{d} + m_{q_{u}}\bar{q}_{u}q_{u} + m_{\ell}\bar{\ell}\ell
ight]$$

- Fermion masses are fixed by Yukawa gauge couplings $g_{Hf\bar{f}} = m_f/v$
- The heavier the fermion, the stronger the coupling to Higgs

Higgs field provides masses to gauge bosons and fermions

Self couplings of the Higgs boson

In the scalar Lagrangian, depending on 2 free parameters μ and λ one finds a part for the Higgs boson itself

$$\mathcal{L}_{H} = rac{1}{2} \partial_{\mu} H \partial^{\mu} H - rac{1}{2} m_{H}^{2} H^{2} - rac{m_{H}^{2}}{2v} H^{3} - rac{m_{H}^{2}}{8v^{2}} H^{4}$$

v = √(-μ²/λ) fixed from ew symmetry breaking (M_W, M_Z...)
 mass m_H = √(2λ)v free parameter to be fixed experimentally

The Higgs boson

From the above interactions, Higgs boson produced in different ways

From the above interactions, Higgs boson produced in different ways

Leptonic machines • $e^+e^- \rightarrow Z^* \rightarrow Z + H$ • $e^+e^- \rightarrow \bar{\nu}\nu W^*W^* \rightarrow \bar{\nu}\nu H$

From the above interactions, Higgs boson produced in different ways

Leptonic machines • $e^+e^- \rightarrow Z^* \rightarrow Z + H$ • $e^+e^- \rightarrow \bar{\nu}\nu W^*W^* \rightarrow \bar{\nu}\nu H$

Hadronic machines

- $q\bar{q} \rightarrow V + H$
- $qq \rightarrow V^*V^* \rightarrow qq + H$

•
$$gg \rightarrow H$$

• $gg, q\bar{q} \rightarrow Q\bar{Q} + H$

From the above interactions, Higgs boson produced in different ways

Leptonic machines • $e^+e^- \rightarrow Z^* \rightarrow Z + H$ • $e^+e^- \rightarrow \bar{\nu}\nu W^*W^* \rightarrow \bar{\nu}\nu H$

Hadronic machines

- $q\bar{q} \rightarrow V + H$
- $qq \rightarrow V^*V^* \rightarrow qq + H$

•
$$gg
ightarrow H$$

• $gg, q\bar{q} \rightarrow Q\bar{Q} + H$

with a preference for decays into heavy particles

From the above interactions, Higgs boson produced in different ways

Leptonic machines • $e^+e^- \rightarrow Z^* \rightarrow Z + H$ • $e^+e^- \rightarrow \bar{\nu}\nu W^*W^* \rightarrow \bar{\nu}\nu H$

Hadronic machines

• $q\bar{q} \rightarrow V + H$ • $qq \rightarrow V^*V^* \rightarrow qq + H$

•
$$gg
ightarrow H$$

• $gg, q\bar{q} \rightarrow Q\bar{Q} + H$

with a preference for decays into heavy particles

One of the main objectives of ATLAS and CMS experiments at LHC and a success announced in 2012 !

Sébastien Descotes-Genon (LPT-Orsay)

Seeing the Higgs boson

 $H \rightarrow \gamma \gamma$

Data Signal (m_µ = 124.5 GeV µ = 1.66)

90 100 110 120 130 140 150 160 170

Background ZZ*

Background Z+iets, t

Systematic uncertainty

35 ATLAS

30

25

20

 $H \rightarrow ZZ^* \rightarrow 4l$

(s = 7 TeV: Ldt = 4.5 fb⁻¹

ts = 8 TeV: Ldt = 20.3 fb⁻¹

 $H\to ZZ\to 4\ell$

SM and beyond 4

m_{4/} [GeV]

Identifying the Higgs boson

	SM Br (%)	Signif ATLAS (σ)	Signif CMS (σ)
$H ightarrow bar{b}$	58.4 ± 1.9	1.4	2.1
H ightarrow WW	$\textbf{21.4} \pm \textbf{0.9}$	6.5	4.7
H ightarrow au au	$\textbf{6.27} \pm \textbf{0.36}$	4.5	3.8
H ightarrow ZZ	$\textbf{2.62} \pm \textbf{0.11}$	8.1	6.5
$H ightarrow \gamma \gamma$	$\textbf{0.227} \pm \textbf{0.011}$	5.2	4.6
$H ightarrow \mu \mu$	$\textbf{0.018} \pm \textbf{0.001}$	-	-

- From $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ (run 1): $m_H = 125.09 \pm 0.21 \pm 0.11$ GeV
- From H → ZZ → 4ℓ: J^P = 0⁺ (other hyp excluded at 99% CL)

Cross checking Higgs properties

- Higgs coupling prop to mass of spin-1 and spin-1/2 masses at tree
- Production (σ) or decay (Br) with respect to SM

A few more tests of the Standard Model

Z coupling to neutrinos

$$\frac{\Gamma(Z \to \text{invisible})}{\Gamma(Z \to \ell^+ \ell^-)} = N_{\nu} \frac{\Gamma(Z \to \nu_{\ell} \bar{\nu}_{\ell})}{\Gamma(Z \to \ell^+ \ell^-)} = N_{\nu} \frac{2}{1 + (1 - 4\sin^2 \theta_W)^2} = 1.96 N_{\nu}$$

LEP measurements: Only 3 light neutrinos !

Consider the cross section for $e^+e^- \rightarrow \gamma, Z \rightarrow f\bar{f}$ with an angle θ between in and out states in center of mass

$$\frac{d\sigma}{d\Omega} = \frac{\alpha_{em}^2}{8s} N_f [A(1 + \cos^2 \theta) + B \cos \theta - h_f [C(1 + \cos^2 \theta) + D \cos \theta]]$$

Consider the cross section for $e^+e^- \rightarrow \gamma, Z \rightarrow f\bar{f}$ with an angle θ between in and out states in center of mass

$$\frac{d\sigma}{d\Omega} = \frac{\alpha_{em}^2}{8s} N_f [A(1 + \cos^2 \theta) + B \cos \theta - h_f [C(1 + \cos^2 \theta) + D \cos \theta]]$$

- N_f number of fermion species: $N_\ell = 1, N_q = N_c(1 + \alpha_s(M_Z^2) + ...)$
- h_f helicity of the fermion

Consider the cross section for $e^+e^- \rightarrow \gamma, Z \rightarrow f\bar{f}$ with an angle θ between in and out states in center of mass

$$\frac{d\sigma}{d\Omega} = \frac{\alpha_{em}^2}{8s} N_f [A(1 + \cos^2 \theta) + B \cos \theta - h_f [C(1 + \cos^2 \theta) + D \cos \theta]]$$

- N_f number of fermion species: $N_\ell = 1, N_q = N_c(1 + \alpha_s(M_Z^2) + ...)$
- h_f helicity of the fermion
- A, B, C, D predicted functions of Z couplings : a_e, v_e, a_f, v_f

Consider the cross section for $e^+e^- \rightarrow \gamma, Z \rightarrow f\bar{f}$ with an angle θ between in and out states in center of mass

$$\frac{d\sigma}{d\Omega} = \frac{\alpha_{em}^2}{8s} N_f [A(1 + \cos^2 \theta) + B \cos \theta - h_f [C(1 + \cos^2 \theta) + D \cos \theta]]$$

- N_f number of fermion species: $N_\ell = 1, N_q = N_c(1 + \alpha_s(M_Z^2) + ...)$
- *h_f* helicity of the fermion
- A, B, C, D predicted functions of Z couplings : a_e, v_e, a_f, v_f

$$\sigma = \frac{4\pi \alpha_{em}^2}{3s} N_f A \qquad A_{FB}^f = \frac{N_F - N_B}{N_F + N_B} = \frac{3}{8} \frac{B}{A}$$
$$A_{LR}^f = \frac{\sigma^{h_f = 1} - \sigma^{h_f = -1}}{\sigma^{h_f = 1} + \sigma^{h_f = -1}} = -\frac{C}{A}$$

• At the Z peak, $A_{FB}^{f} = \frac{3}{4} A_{LR}^{e} A_{LR}^{f}$ (measures polarisation of quarks)

Electroweak precision measurements

- Fitting the previous observables and others, depending on *M_H* and *m_t*
- Good overall agreement

Higgs mass and electroweak observables

- m_t , m_H and m_W in good agreement from electroweak observables
- *m_H* determined indirectly from electroweak observables in good agreement with direct determination
- Important constraint for any theory beyond the Standard Model

• Yukawa interactions, but 3 generations

• Yukawa interactions, but 3 generations yield 3 \times 3 matrices

 $\sum_{i,j=1,2,3} (\bar{q}'_d)^i_L(M_d)_{ij} (q'_d)^j_R + (\bar{q}'_u)^i_L(M_u)_{ij} (q'_u)^j_R + (\bar{\ell}')^i_L(M_\ell)_{ij} (\ell')^j_R$

• Yukawa interactions, but 3 generations yield 3×3 matrices

 $\sum_{i,j=1,2,3} (\bar{q}'_d)^{i}_L(M_d)_{ij} (q'_d)^{j}_R + (\bar{q}'_u)^{i}_L(M_u)_{ij} (q'_u)^{j}_R + (\bar{\ell}')^{i}_L(M_\ell)_{ij} (\ell')^{j}_R$

• Mass states ? Diagonalise $M_f = V_f^{\dagger} m_f U_f$ where U and V unitary, and m diagonal

$$[(\bar{q}_d)_L m_d(q_d)_R + (\bar{q}_u)_L m_u(q_u)_R + \bar{\ell}_L m_\ell \ell_R + h.c.]$$

with mass eigenstates q from interaction eigenst. q' via unitary rot

$$\begin{array}{ll} (q_d)_L = V_d(q_d')_L & (q_u)_L = V_u(q_u')_L & \ell_L = V_\ell \ell_L' \\ (q_d)_R = U_d(q_d')_R & (q_u)_R = U_u(q_u')_R & \ell_R = U_\ell \ell_R' \end{array}$$

• Yukawa interactions, but 3 generations yield 3 \times 3 matrices

 $\sum_{i,j=1,2,3} (\bar{q}'_d)^j_L(M_d)_{ij} (q'_d)^j_R + (\bar{q}'_u)^j_L(M_u)_{ij} (q'_u)^j_R + (\bar{\ell}')^i_L(M_\ell)_{ij} (\ell')^j_R$

• Mass states ? Diagonalise $M_f = V_f^{\dagger} m_f U_f$ where U and V unitary, and m diagonal

$$[(\bar{q}_d)_L m_d(q_d)_R + (\bar{q}_u)_L m_u(q_u)_R + \bar{\ell}_L m_\ell \ell_R + h.c.]$$

with mass eigenstates q from interaction eigenst. q' via unitary rot

$$\begin{array}{ll} (q_d)_L = V_d(q_d')_L & (q_u)_L = V_u(q_u')_L & \ell_L = V_\ell \ell_L' \\ (q_d)_R = U_d(q_d')_R & (q_u)_R = U_u(q_u')_R & \ell_R = U_\ell \ell_R' \end{array}$$

 Interactions defined in terms of q' introducing U, V in interactions when expressed in terms of q

Sébastien Descotes-Genon (LPT-Orsay)

Charged & neutral currents

• Flavour-conserving neutral: $\overline{f}_L \Gamma f_L = \overline{f}'_L \Gamma f'_L$, $\overline{f}_R \Gamma f_R = \overline{f}'_R \Gamma f'_R$

$$\mathcal{L}_{NC} = \frac{e}{\sin(2\theta_W)} Z_{\mu} \sum_{f} \bar{f} \gamma^{\mu} [v_f - a_f \gamma_5] f$$

Charged & neutral currents

• Flavour-conserving neutral: $\overline{f}_L \Gamma f_L = \overline{f}'_L \Gamma f'_L$, $\overline{f}_R \Gamma f_R = \overline{f}'_R \Gamma f'_R$

$$\mathcal{L}_{NC} = rac{e}{\sin(2 heta_W)} Z_\mu \sum_f ar{f} \gamma^\mu [v_f - a_f \gamma_5] f$$

• Flavour-changing charged: $\bar{u}'_L \Gamma d'_L = \bar{u}_L V_u \Gamma V_d^{\dagger} d_L = \bar{u}_L V^{CKM} \Gamma d_L$

$$\mathcal{L}_{CC} = rac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \left[\sum_{ij} ar{u}_i \gamma^{\mu} (1-\gamma_5) V^{CKM}_{ij} d_j + \sum_i ar{
u}_i \gamma^{\mu} (1-\gamma_5) \ell_i
ight] + h.c.$$

Charged & neutral currents

• Flavour-conserving neutral: $\overline{f}_L \Gamma f_L = \overline{f}'_L \Gamma f'_L$, $\overline{f}_R \Gamma f_R = \overline{f}'_R \Gamma f'_R$

$$\mathcal{L}_{NC} = rac{e}{\sin(2 heta_W)} Z_\mu \sum_f ar{f} \gamma^\mu [v_f - a_f \gamma_5] f$$

• Flavour-changing charged: $\bar{u}'_L \Gamma d'_L = \bar{u}_L V_u \Gamma V_d^{\dagger} d_L = \bar{u}_L V^{CKM} \Gamma d_L$

$$\mathcal{L}_{CC} = rac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \left[\sum_{ij} ar{u}_i \gamma^{\mu} (1-\gamma_5) V^{CKM}_{ij} d_j + \sum_i ar{
u}_i \gamma^{\mu} (1-\gamma_5) \ell_i
ight] + h.c.$$

- For 3 generations, Cabibbo-Kobayahi-Maskawa matrix V contains one imaginary term, (only) source of CP violation in SM
- If no ν_R, m_ν = 0, ℓ rotation absorbed in ν, no lepton mixing matrix

The CKM matrix

- V^{CKM} depends on 4 parameters $A, \lambda, \bar{\rho}, \bar{\eta}$
- Each band is a constraint from one (or several) weak process involving quarks
- Agree, lead to accurate $\bar{\rho}, \bar{\eta}$
- $\bar{\eta} \neq 0$ indicates CP-violation

Important constraint for any theory beyond the Standard Model

End of part IV

