The Standard Model and beyond (6) More SM extensions

Sébastien Descotes-Genon

Laboratoire de Physique Théorique
CNRS \& Université Paris-Sud, 91405 Orsay, France

July 14th 2018

Bosons

Fermions

Fifth lecture

Limits of the SM

- lots of arbitrary params., with unexplained hierarchies (masses)
- why this gauge structure, partially unified, with these charges ?
- fine tuning related to presence of fundamental scalar field (Higgs)
- cosmology: matter/antimatter asymmetry, dark matter ?
- hints of violation of lepton universality ?

Supersymmetry

- additional symmetry relating bosons and fermions
- doubling of the spectrum of observed particles
- alleviate problems of fine tuning for the Higgs
- difficulty to break susy without generating large contributions to low-energy processes
- searched (and not found yet) at LHC through direct production

Other directions to extend the SM ?

Many different directions

- Fermion content (more "matter")
- Gauge boson content (more "interactions")
- Scalar sector (different symmetry breakings)
- Additional symmetries
- Additional dimensions

Main constraints

- Reproduce data within experimental and theoretical uncertainties \Longrightarrow Be close to SM up to currently tested energies
- Most new phenomena should occur only in untested processes \Longrightarrow Modify structure of the theory to push NP in these corners
- Built as decoupling theories: recover SM when $\Lambda_{N P} \rightarrow \infty$ \Longrightarrow SM seen as effective theory, with NP corrections $O\left(\Lambda_{E W} / \Lambda_{N P}\right)$

Grand unified theories

GUT: basic idea

Unifying phenomena has been a driving concept

- electricity and magentism in electrodynamics
- weak and electromagnetism unified in $S U_{L}(2) \times U_{Y}(1)$
- gauge couplings have similar values around $10^{16} \mathrm{GeV}$ why not unify all three SM interactions in a single gauge group ?

GUT: basic idea

Unifying phenomena has been a driving concept

- electricity and magentism in electrodynamics
- weak and electromagnetism unified in $S U_{L}(2) \times U_{Y}(1)$
- gauge couplings have similar values around $10^{16} \mathrm{GeV}$ why not unify all three SM interactions in a single gauge group ?

For these Grand Unified Theories (GUTs), one needs

- a gauge group large enough to contain all SM gauge bosons
- a way of breaking down this large group down to
$S U_{C}(3) \times S U_{L}(2) \times U_{Y}(1)$
 somewhere above the EW scale

Several candidates: $S U(5), S O(10), E_{6}$
\Longrightarrow Focus on the first one!

GUT: gauge bosons in $S U(5)$

24 generators (5×5 matrices): $W_{\mu}=W_{\mu}^{A} T^{A}$ with $A=1 \ldots 24$
$W_{\mu}=\left(\begin{array}{ccc|cc}G_{\mu}^{a} \lambda^{a} & - & \frac{1}{\sqrt{15}} B_{\mu} \mathbf{1}_{3} & \begin{array}{c}X_{\mu}^{1} \\ X_{\mu}^{2} \\ \end{array} & X_{\mu}^{3}\end{array}\right.$

- $8 S U_{C}(3)$ gluons G_{μ}^{a}
- $3 S U_{L}(2)$ weak bosons $W_{\mu}^{ \pm, 3}$
- $1 U_{Y}(1)$ weak bosons B_{μ}
- 12 new bosons X, Y carrying both colour and weak isospin (vector) leptoquarks: can decay into a lepton and a quark

GUT: fermions in $S U(5)$

All fermions in two representations

- $\overline{5}$: conjugate of fundamental representation 5
- 10: antisymmetric part of 5×5

$$
\psi_{\overline{5}} \sim\left(\begin{array}{c}
d_{1}^{c} \\
d_{2}^{c} \\
d_{3}^{c} \\
e^{-} \\
-\nu_{e}
\end{array}\right)_{L} \quad \psi_{10} \sim\left(\begin{array}{ccccc}
0 & u_{3}^{c} & -u_{2}^{c} & -u^{1} & -d^{1} \\
-u_{3}^{c} & 0 & u_{1}^{c} & -u^{2} & -d^{2} \\
u_{2}^{c} & -u_{1}^{c} & 0 & -u^{3} & -d^{3} \\
u_{1} & u_{2} & u_{3} & 0 & -e^{+} \\
d_{1} & d_{2} & d_{3} & e^{+} & 0
\end{array}\right)_{L}
$$

- $u_{a=1,2,3}, d_{a=1,2,3}$ for the colour of the quarks
- Right-handed part from $\psi_{R}^{c}=\boldsymbol{C}{\overline{\psi_{L}}}^{T}$ (with C conjugation matrix)

GUT: fermions in $S U(5)$

All fermions in two representations

- $\overline{5}$: conjugate of fundamental representation 5
- 10: antisymmetric part of 5×5

$$
\psi_{\overline{5}} \sim\left(\begin{array}{c}
d_{1}^{c} \\
d_{2}^{c} \\
d_{3}^{c} \\
e^{-} \\
-\nu_{e}
\end{array}\right)_{L} \quad \psi_{10} \sim\left(\begin{array}{ccccc}
0 & u_{3}^{c} & -u_{2}^{c} & -u^{1} & -d^{1} \\
-u_{3}^{c} & 0 & u_{1}^{c} & -u^{2} & -d^{2} \\
u_{2}^{c} & -u_{1}^{c} & 0 & -u^{3} & -d^{3} \\
u_{1} & u_{2} & u_{3} & 0 & -e^{+} \\
d_{1} & d_{2} & d_{3} & e^{+} & 0
\end{array}\right)_{L}
$$

- $u_{a=1,2,3}, d_{a=1,2,3}$ for the colour of the quarks
- Right-handed part from $\psi_{R}^{c}=\boldsymbol{C} \bar{\psi}^{T}$ (with C conjugation matrix)
\Longrightarrow Baryon number $B=1 / 3\left(n_{q}-n_{\bar{q}}\right)$ and lepton number $L=n_{\ell}-n_{\bar{\ell}}$, conserved in SM, are not good quantum numbers here!

GUT: Symmetry breaking in $S U(5)$

- At $M_{G U T} \simeq 10^{15} \mathrm{GeV}$, breaking $S U(5) \rightarrow S U(3) \times S U(2) \times U(1)$ via a Higgs field in (adjoint) representation 24

$$
\langle 0| \Phi_{24}|0\rangle=\left(\begin{array}{ccc|cc}
V & & & & \\
& V & & & \\
& & V & & \\
\hline & & & -\frac{3 V}{2} & \\
& & & & -\frac{3 V}{2}
\end{array}\right) \quad M_{X}^{2}=M_{Y}^{2}=\frac{25}{8} g_{5}^{2} V^{2}
$$

GUT: Symmetry breaking in $\operatorname{SU}(5)$

- At $M_{G U T} \simeq 10^{15} \mathrm{GeV}$, breaking $S U(5) \rightarrow S U(3) \times S U(2) \times U(1)$ via a Higgs field in (adjoint) representation 24

$$
\langle 0| \Phi_{24}|0\rangle=\left(\begin{array}{lll|ll}
V & & & & \\
& V & & & \\
& & V & & \\
\hline & & & -\frac{3 V}{2} & \\
& & & -\frac{3 V}{2}
\end{array}\right) \quad M_{X}^{2}=M_{Y}^{2}=\frac{25}{8} g_{5}^{2} V^{2}
$$

- At ew scale, breaking via Higgs in (fundamental) representation 5

$$
H_{5} \sim\left(\begin{array}{c}
\Phi_{1} \\
\Phi_{2} \\
\Phi_{3} \\
\hline \phi^{+} \\
\phi^{0}
\end{array}\right) \quad\langle 0| H_{5}|0\rangle=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\hline 0 \\
v / \sqrt{2}
\end{array}\right)
$$

with Φ_{a} coloured scalar with $q=-1 / 3$ and ϕ SM Higgs doublet

GUT: Consequences

Proton decay

Not observed
\Longrightarrow Preference for $M_{X} \geq 10^{15} \mathrm{GeV}$

GUT: Consequences

Proton decay

Not observed
\Longrightarrow Preference for $M_{X} \geq 10^{15} \mathrm{GeV}$

At the scale M_{X}, unification of

- gauge couplings

$$
\begin{array}{cr}
g=\sqrt{\frac{5}{3}} g^{\prime}=g_{s}=g_{5} & \sin ^{2} \theta_{W}=\frac{3}{8} \\
m_{d}=m_{e} \quad m_{s}=m_{\mu} & m_{b}=m_{\tau}
\end{array}
$$

- Yukawa couplings

GUT: Consequences

Proton decay

Not observed
\Longrightarrow Preference for $M_{X} \geq 10^{15} \mathrm{GeV}$

At the scale M_{X}, unification of

- gauge couplings $\quad g=\sqrt{\frac{5}{3}} g^{\prime}=g_{s}=g_{5} \quad \sin ^{2} \theta_{W}=\frac{3}{8}$
- Yukawa couplings $\quad m_{d}=m_{e} \quad m_{s}=m_{\mu} \quad m_{b}=m_{\tau}$

Running from $M_{X} \simeq 10^{14} \mathrm{GeV}$ down to electroweak scale

- Zeroth order prediction reasonable for m_{b} / m_{τ} and $\sin ^{2} \theta_{W}$
- Other predictions harder to tune \Longrightarrow susy, more Higgs, other grand unification groups

Leptoquarks

Leptoquarks: basic idea

- GUT theory: gauge bosons coupling to both quarks and leptons
- Fields with quantum numbers to decay into a quark and a lepton

Leptoquarks: basic idea

- GUT theory: gauge bosons coupling to both quarks and leptons
- Fields with quantum numbers to decay into a quark and a lepton
- Called generically leptoquarks
- 2 spin-1/2 fermions: can be spin 0 (scalar) or spin 1 (vector)
- 1 non-coloured (lepton) and 1 coloured (quark): must be coloured
- combine weak singlets (right-handed) and/or doublets (left-handed): can yield weak singlet, doublet, triplet

Leptoquarks: basic idea

- GUT theory: gauge bosons coupling to both quarks and leptons
- Fields with quantum numbers to decay into a quark and a lepton
- Called generically leptoquarks
- 2 spin-1/2 fermions: can be spin 0 (scalar) or spin 1 (vector)
- 1 non-coloured (lepton) and 1 coloured (quark): must be coloured
- combine weak singlets (right-handed) and/or doublets (left-handed): can yield weak singlet, doublet, triplet

Spin	$S U_{C}(3)$	$S U_{L}(2)$	$U_{Y}(1)$	Symbol
0	$\overline{3}$	3	$1 / 3$	S_{3}
0	3	2	$7 / 6,1 / 6$	R_{2}, \tilde{R}_{2}
0	$\overline{3}$	1	$4 / 3,1 / 3,-2 / 3$	$\tilde{S}_{1}, S_{1}, \bar{S}_{1}$
1	3	3	$2 / 3$	U_{3}
1	$\overline{3}$	2	$5 / 6,-1 / 6$	V_{2}, \tilde{V}_{2}
1	3	1	$5 / 3,2 / 3,-1 / 3$	$\tilde{U}_{1}, U_{1}, \bar{U}_{1}$

with different couplings to quarks and leptons from different gener.

Leptoquarks: searches

- Currently actively searched at LHC limits on LQ prod cross section \times LQ decay rate in given
- Many indirect constraints (proton decay, $\mu \rightarrow e \gamma \ldots$)

Leptoquarks: violation of lepton universality

- Hints of violation of lepton universality in b-decays
- (Scalar and vector) leptoquarks coupling predominantly to second and third generations of fermions ?

$$
R_{K\left({ }^{*}\right)}=\frac{\operatorname{Br}\left(B \rightarrow K\left({ }^{*}\right) \mu \mu\right)}{\operatorname{Br}\left(B \rightarrow K\left({ }^{*}\right) e e\right)}
$$

Two-Higgs doublet models

2HDM: basic idea

Scalar sector

- SM: simplest choice with a single scalar doublet ϕ
- Susy: need for 2 different scalar doublets H_{u} and H_{d}
- Why not allow more complicated scalar sectors ?

2HDM: basic idea

Scalar sector

- SM: simplest choice with a single scalar doublet ϕ
- Susy: need for 2 different scalar doublets H_{u} and H_{d}
- Why not allow more complicated scalar sectors ?

Impact on electroweak symmetry breaking

- N scalar fields H_{i}
- weak isospin I_{i} (singlet, doublet, triplet. . . under $S U_{L}(2)$)
- hypercharge Y_{i} under $U_{Y}(1)$
- one neutral component with $Q=0$ which acquires a vacuum expectation value v_{i}

$$
\rho=\frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2} \theta_{W}}=\frac{1}{2} \frac{\sum_{i=1}^{N}\left[4 I_{i}\left(I_{i}+1\right)-Y_{i}^{2}\right] v_{i}}{\sum_{i=1}^{N} Y_{i}^{2} v_{i}}
$$

2HDM: basic idea

Scalar sector

- SM: simplest choice with a single scalar doublet ϕ
- Susy: need for 2 different scalar doublets H_{u} and H_{d}
- Why not allow more complicated scalar sectors ?

Impact on electroweak symmetry breaking

- N scalar fields H_{i}
- weak isospin I_{i} (singlet, doublet, triplet. . . under $S U_{L}(2)$)
- hypercharge Y_{i} under $U_{Y}(1)$
- one neutral component with $Q=0$ which acquires a vacuum expectation value v_{i}

$$
\rho=\frac{M_{W}^{2}}{M_{z}^{2} \cos ^{2} \theta_{W}}=\frac{1}{2} \frac{\sum_{i=1}^{N}\left[4 l_{i}\left(l_{i}+1\right)-Y_{i}^{2}\right] v_{i}}{\sum_{i=1}^{N} Y_{i}^{2} v_{i}}
$$

$\rho \simeq 1$ (exp, ratio of neutral to charged currents) easily obeyed if only singlets $(I=0, Y=0)$ or doublets $(I=1 / 2, Y= \pm 1)$

2HDM: scalar potential and symmetry breaking

 Φ_{1} and Φ_{2} two complex Higgs doublets with $Y=1$, with a potential$$
\begin{aligned}
& V=m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-m_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2} \\
& +\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2}+\lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1}+\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left(\Phi_{2}^{\dagger} \Phi_{1}\right)^{2}\right]
\end{aligned}
$$

with vaccum exp values and decomposition around this minimum

$$
\langle 0| \Phi_{a}|0\rangle=\binom{0}{\frac{v_{i}}{\sqrt{2}}} \quad \Phi_{a}=\binom{\phi_{a}^{+}}{\left(v_{a}+\rho_{a}^{0}+i \eta_{a}^{0}\right) / \sqrt{2}}
$$

- Three degrees of freedom used to give masses to $W^{ \pm}, Z^{0}$
- 1 charged scalar particle
- 2 neutral scalar particles (the light one similar to SM Higgs boson)
- 1 neutral pseudoscalar particle (odd under parity)

2HDM: Yukawa couplings

In absence of syms, both Higgs doublets couple to a given type of fermions (up-quarks, down-quarks, charged leptons)

$$
\mathcal{L}_{Y}=y_{i j}^{(1)} \bar{\psi}_{i, L} \Phi_{1} \psi_{j, R}+y_{i j}^{(2)} \bar{\psi}_{i, L} \Phi_{2} \psi_{j, R}
$$

with $i, j=1,2,3$ generation indices, leading to mass matrices

$$
M_{i j}=\frac{1}{\sqrt{2}}\left(y_{i j}^{(1)} v_{1}+y_{i j}^{(2)} v_{2}\right)
$$

2HDM: Yukawa couplings

In absence of syms, both Higgs doublets couple to a given type of fermions (up-quarks, down-quarks, charged leptons)

$$
\mathcal{L}_{Y}=y_{i j}^{(1)} \bar{\psi}_{i, L} \Phi_{1} \psi_{j, R}+y_{i j}^{(2)} \bar{\psi}_{i, L} \Phi_{2} \psi_{j, R}
$$

with $i, j=1,2,3$ generation indices, leading to mass matrices

$$
M_{i j}=\frac{1}{\sqrt{2}}\left(y_{i j}^{(1)} v_{1}+y_{i j}^{(2)} v_{2}\right)
$$

- In 2HDM, $y^{(1)}$ and $y^{(2)}$ cannot be diagonalised simultaneously, so after diagonalising M, Yukawa interactions with off-diagonal terms

2HDM: Yukawa couplings

In absence of syms, both Higgs doublets couple to a given type of fermions (up-quarks, down-quarks, charged leptons)

$$
\mathcal{L}_{Y}=y_{i j}^{(1)} \bar{\psi}_{i, L} \Phi_{1} \psi_{j, R}+y_{i j}^{(2)} \bar{\psi}_{i, L} \Phi_{2} \psi_{j, R}
$$

with $i, j=1,2,3$ generation indices, leading to mass matrices

$$
M_{i j}=\frac{1}{\sqrt{2}}\left(y_{i j}^{(1)} v_{1}+y_{i j}^{(2)} v_{2}\right)
$$

- In 2HDM, $y^{(1)}$ and $y^{(2)}$ cannot be diagonalised simultaneously, so after diagonalising M, Yukawa interactions with off-diagonal terms
- Thus, in generic 2HDM, Flavour-Changing Neutral Currents scalar-fermion-fermion occur at tree level

2HDM: Yukawa couplings

In absence of syms, both Higgs doublets couple to a given type of fermions (up-quarks, down-quarks, charged leptons)

$$
\mathcal{L}_{Y}=y_{i j}^{(1)} \bar{\psi}_{i, L} \Phi_{1} \psi_{j, R}+y_{i j}^{(2)} \bar{\psi}_{i, L} \Phi_{2} \psi_{j, R}
$$

with $i, j=1,2,3$ generation indices, leading to mass matrices

$$
M_{i j}=\frac{1}{\sqrt{2}}\left(y_{i j}^{(1)} v_{1}+y_{i j}^{(2)} v_{2}\right)
$$

- In 2HDM, $y^{(1)}$ and $y^{(2)}$ cannot be diagonalised simultaneously, so after diagonalising M, Yukawa interactions with off-diagonal terms
- Thus, in generic 2HDM, Flavour-Changing Neutral Currents scalar-fermion-fermion occur at tree level
- In SM, only one doublet, so diagonalising M is equivalent to diagonalising y for each type of fermion: no FCNC at tree level (only loop level, indeed small experimentally)

2HDM: several models

To avoid these FCNC

- Type I: All quarks couple to one of the Higgs doublets (say Φ_{2})
- Type II: $Q=2 / 3$ right-handed quarks couple to Φ_{2} and $Q=-1 / 3$ right-handed quarks couple to Φ_{1}
- Possibility to choose couplings either to Φ_{1} and Φ_{2} for right-handed charged leptons
- (General) alignment: proportional Yukawa couplings to Φ_{1} and Φ_{2}

2HDM: several models

To avoid these FCNC

- Type I: All quarks couple to one of the Higgs doublets (say Φ_{2})
- Type II: $Q=2 / 3$ right-handed quarks couple to Φ_{2} and $Q=-1 / 3$ right-handed quarks couple to Φ_{1}
- Possibility to choose couplings either to Φ_{1} and Φ_{2} for right-handed charged leptons
- (General) alignment: proportional Yukawa couplings to Φ_{1} and Φ_{2}

Scalar-fermion-fermion couplings in terms of

- fermion masses
- vaccum expectation value $v=\sqrt{v_{1}^{2}+v_{2}^{2}}$
- β defined as $\cos \beta=v_{1} / v$ and $\sin \beta=v_{2} / v$
- α defined as rotation angle between $\rho_{1}^{0}, \rho_{2}^{0}$ and physical scalar h, H
\Longrightarrow Scalar interactions main probe of 2HDM

2HDM: experimental consequences

- Lightest scalar h identified to the observed H boson
- Searches for heavier scalar bosons (charged/neutral)
- Deviations in couplings of the observed H boson compared to SM
- Charged scalar contributions to low-energy processes
- The heavier the fermions, the stronger the coupling !

Extra-dimensions

Extra dimensions : basic idea

Some theories (like strings) prefer more than 4 dimensions
Could extra dimensions help to include gravitation?

Extra dimensions : basic idea

Some theories (like strings) prefer more than 4 dimensions
Could extra dimensions help to include gravitation ?

- Unseen because much energy needed to jump into extra dim

Extra dimensions : basic idea

Some theories (like strings) prefer more than 4 dimensions
Could extra dimensions help to include gravitation ?

- Unseen because much energy needed to jump into extra dim
- Free massless scalar in 5D $\phi\left(x_{\mu}, y\right)$

$$
\mathcal{L}=\partial_{A} \phi \partial^{A} \phi \quad A=0 \ldots 4
$$

with y curled into a circle of radius R

Extra dimensions : basic idea

Some theories (like strings) prefer more than 4 dimensions
Could extra dimensions help to include gravitation?

- Unseen because much energy needed to jump into extra dim
- Free massless scalar in 5D $\phi\left(x_{\mu}, y\right)$

$$
\mathcal{L}=\partial_{A} \phi \partial^{A} \phi \quad A=0 \ldots 4
$$

with y curled into a circle of radius R

- Project over Fourier modes and integrate over y^{∞}

$$
\begin{array}{r}
\phi\left(x_{\mu}, y+2 \pi R\right)=\phi\left(x_{\mu}, y\right) \Longrightarrow \phi\left(x_{\mu}, y\right)=\sum_{n=-\infty}^{+\infty} \phi_{n}\left(x_{\mu}\right) e^{i n y / R} \\
\mathcal{L}=(2 \pi R)\left[\partial_{\mu} \phi_{0} \partial^{\mu} \phi_{0}+2 \sum_{n=1}^{+\infty}\left(\partial_{\mu} \phi_{n} \partial^{\mu} \phi_{n}-\frac{n^{2}}{R^{2}} \phi_{n} \phi_{n}\right)\right]
\end{array}
$$

Extra dimensions : basic idea

Some theories (like strings) prefer more than 4 dimensions
Could extra dimensions help to include gravitation?

- Unseen because much energy needed to jump into extra dim
- Free massless scalar in 5D $\phi\left(x_{\mu}, y\right)$

$$
\mathcal{L}=\partial_{A} \phi \partial^{A} \phi \quad A=0 \ldots 4
$$

with y curled into a circle of radius R

- Project over Fourier modes and integrate over y^{∞}

$$
\begin{array}{r}
\phi\left(x_{\mu}, y+2 \pi R\right)=\phi\left(x_{\mu}, y\right) \Longrightarrow \phi\left(x_{\mu}, y\right)=\sum_{n=-\infty}^{+\infty} \phi_{n}\left(x_{\mu}\right) e^{i n y / R} \\
\mathcal{L}=(2 \pi R)\left[\partial_{\mu} \phi_{0} \partial^{\mu} \phi_{0}+2 \sum_{n=1}^{+\infty}\left(\partial_{\mu} \phi_{n} \partial^{\mu} \phi_{n}-\frac{n^{2}}{R^{2}} \phi_{n} \phi_{n}\right)\right]
\end{array}
$$

- "Massless" ϕ_{0} and tower of Kaluza-Klein excitations of $m_{n}=n / R$ [if $1 / R>$ a few TeV , only $\phi_{0} \simeq \mathrm{SM}$ seen up to now]

Extra dimensions : Gravitation and SM

- Extra dimensions used in "brane world" scenarios
- SM particles on a brane (4D plane)
- gravitation in the bulk ($n+4 \mathrm{D}$ space)

Extra dimensions : Gravitation and SM

- Extra dimensions used in
"brane world" scenarios
- SM particles on a brane (4D plane)
- gravitation in the bulk ($n+4 \mathrm{D}$ space)
- Gravitation affected by Kaluza-Klein (KK) mechanism,
but SM fields unchanged

Extra dimensions : Gravitation and SM

- Extra dimensions used in
"brane world" scenarios
- SM particles on a brane (4D plane)
- gravitation in the bulk ($n+4 \mathrm{D}$ space)
- Gravitation affected by Kaluza-Klein (KK) mechanism,
but SM fields unchanged
- Solve discrepancy between the Planck scale (gravitation) and the electroweak scale (3 other interactions)

$$
\Lambda_{\text {Planck }}^{2}=\Lambda_{\text {fund }}^{2+n}(2 \pi R)^{n}
$$

$\ldots \Lambda_{\text {fund }} \simeq \Lambda_{\text {ew }}$ if R is small enough (but why should it be ?)

Extra dimensions : symmetry breaking

Further models introduce two branes

- IR brane at $z=0$: (MS)SM particles
- UV brane at $z=R$: sector responsible for ew/susy breaking
- Geometry : flat in 4D, exponential suppression for x_{5}
- Only some mediator propagate in the bulk (gravity, gauge interactions)
- Yields flavour blind ew/susy brkg

Extra dimensions : symmetry breaking

Further models introduce two branes

- IR brane at $z=0$: (MS)SM particles
- UV brane at $z=R$: sector responsible for ew/susy breaking
- Geometry : flat in 4D, exponential suppression for x_{5}
- Only some mediator propagate in the bulk (gravity, gauge interactions)
- Yields flavour blind ew/susy brkg

Hierarchy and fine-tuning translated into geometrical question

- why are some extra dimensions so large/small ?
- why is the metric so different in different directions ?
- why some fields are stuck on a brane, and not others ? ...

Extra dimensions : masses

- SM fields extending in the bulk
- with various wave functions

- mass hierarchy from different overlap with Higgs on the IR brane

Extra dimensions : masses

- SM fields extending in the bulk
- with various wave functions

- mass hierarchy from different overlap with Higgs on the IR brane

- Extra dim natural in some extensions of the SM (susy, strings)

Extra dimensions : masses

- SM fields extending in the bulk
- with various wave functions

- mass hierarchy from different overlap with Higgs on the IR brane

- Extra dim natural in some extensions of the SM (susy, strings)
- Kaluza-Klein excitations should be easy to spot

Extra dimensions : masses

- SM fields extending in the bulk
- with various wave functions

- mass hierarchy from different overlap with Higgs on the IR brane

- Extra dim natural in some extensions of the SM (susy, strings)
- Kaluza-Klein excitations should be easy to spot
- No fully satisfying model for phenomenological applications (yet ?)

And much more. . .

- Additional gauge bosons ($\left.Z^{\prime}, W^{\prime}\right)$
- Compositeness
- 4th generation
- Little Higgs
- Left-right symmetry...

Anything at LHC ?

Many searches, peaks rise and drop, but no clear signal (yet ?)

Pushing beyond the SM

Generally, similar problems occur

- Hard to reproduce low energy data for quarks and leptons
- Difficulties for some scenarios from direct searches
- Need to break the original (and unobserved) beautiful symmetries, providing many new parameters
- Experiment to drive towards one theory rather than opposite

It is your time to be the cook...

Have fun!

